01;05;06;07;09;11 Стационарная продольная проводимость пограничного электронного слоя

© А.В. Ивлев, К.Б. Павлов, М.А. Яковлев

Московский государственный технический университет им. Н.Э. Баумана, 107005 Москва, Россия

(Поступило в Редакцию 8 января 1998 г.)

Получено аналитическое решение задачи о движении электронов пограничного электронного слоя вдоль поверхности проводника в постоянном электрическом поле. Вычислена продольная проводимость вблизи поверхности в пределах слабой и сильной кулоновской неидеальности электронов слоя. Показано, что при определенных условиях приграничная проводимость может намного превосходить проводимость в глубине проводника.

Введение

В работах [1,2] исследовались свойства пограничного электронного слоя (ПЭС), существующего вблизи свободных поверхностей проводников и полупроводников. Рассматривалось влияние, оказываемое ПЭС на прохождение высокочастотного ЭМ излучения и на процессы ионизации плотного газа вблизи поверхности [3]. Было показано, что основным фактором, определяющим электрофизические свойства ПЭС, является параметр кулоновской неидеальности электронов $\gamma = e^2/4\pi\varepsilon_0 \langle r \rangle \varepsilon_{kin}$, где $\langle r \rangle$ — среднее межэлектронное расстояние, а ε_{kin} средняя кинетическая энергия электронов ($\sim kT$ для невырожденных и $\sim \varepsilon_F$ для вырожденных соответственно).

При малых γ ($\gamma \ll 1$) электроны ПЭС подобны идеальному бесстолкновительному газу [1], а коллективные процессы в ПЭС описываются бесстолкновительным кинетическим уравнением. В обратном случае если электроны образуют сильно неидеальную систему ($\gamma \ge 1$), то электроны подобны жидкости и для описания коллективных процессов необходимо использовать уравнения механики сплошной среды [1,2].

Температура и концентрация электронов проводимости в проводнике или полупроводнике (далее будем использовать определение "проводящее конденсированное вещество" — ПКВ) могут варьироваться в достаточно широких диапазонах, если осуществляется неравновесный нагрев ПКВ импульсами длительностью несколько ps и меньше. При этом температура решетки практически не меняется, а электронная температура может достигать нескольких eV [4]. Электронная концентрация в зависимости от ширины запрещенной зоны (в случае полупроводников) может изменяться от сколь угодно малых значений до концентраций, соответствующих металлу. Поэтому при импульсном нагреве ПКВ возможны различные сочетания параметра неидеальности электронов γ , энергии Ферми ε_F и температуры T, при которых электроны ПКВ и ПЭС образуют либо неидеальную (вырожденную или невырожденную), либо идеальную (невырожденную) кулоновскую систему [5].

Заметим, что продольная проводимость вблизи поверхности ПКВ при определенных условиях должна существенно превосходить проводимость в глубине ПКВ. Такой вывод можно сделать заранее, не выполняя точных расчетов, а основываясь на простых качественных рассуждениях. Вне зависимости от того, является ли электронная компонента идеальным газом или же представляет собой электронную жидкость, основным "сдерживающим фактором" при массовом движении электронов в ПКВ являются столкновения с кристаллической решеткой. Движение электронов вне ПКВ (вдоль поверхности) либо ограничено силами вязкого трения ($\gamma \ge 1$, электронная жидкость), которые намного меньше сил столкновительного трения в ПКВ, либо не ограничено ничем ($\gamma \ll 1$, идеальный электронный газ). Поэтому если эффективное время свободного (без столкновений с решеткой) движения электронов над поверхностью ПКВ окажется существенно больше, чем время свободного пробега электронов в ПКВ, то электронный ток у границы, вызванный приложением продольного электрического поля, должен намного превосходить ток в глубине ПКВ. Поэтому целью предлагаемой работы является рассмотрение вопроса о стационарной проводимости вблизи поверхности ПКВ в случае идеальной и неидеальной электронной компоненты.

Проводимость в случае $\gamma \ll 1$

Рассмотрим следующую задачу: ПКВ занимает полупространство z < 0, электронная компонента ПКВ имеет температуру T и образует идеальную кулоновскую систему. Постоянное электрическое поле E направлено вдоль поверхности ПКВ (по оси x). Требуется определить вызванное полем E возмущение функции распределения электронов вблизи поверхности и проводимость ПКВ как функцию z.

Распределения электронной концентрации n и электрического потенциала Φ ПЭС в области z > 0 имеют

вид [6,7]

$$\Phi(\xi) = -\frac{kT}{e} \left[1 + 2\ln(1+\xi) \right],$$

$$n(\xi) = \frac{n_m}{e} (1+\xi)^{-2},$$
 (1)

где $\xi = z/L$, $L = 2\sqrt{e}D$, $D = \sqrt{\varepsilon_0 kT/2e^2 n_m}$ — дебаевский радиус, соответствующий концентрации электронов в ПКВ n_m , e — основание натурального логарифма.

В области z < 0 концентрация и потенциал изменяются по мере удаления от границы значительно быстрее $\Phi \propto -\exp[-z/D]$, $n \propto \exp[e\Phi/kT]$, и на расстоянии $\simeq (1.5-2)D$ концентрация электронов уже практически не отличается от n_m . Следовательно, в дальнейших расчетах можно положить, что $\Phi \simeq 0$, $n \simeq n_m$ при z < 0, а в точке z = 0 концентрация и потенциал испытывают скачок

$$\Phi(\xi = 0_+) = -\frac{kT}{e}, \quad n(\xi = 0_+) = \frac{n_m}{e}.$$
 (2)

Поэтому пограничным электронным слоем в дальнейшем будем именовать заполненную электронами область z > 0.

Получить точное решение кинетического уравнения в области z < 0, учитывающее рассеяние электронов при столкновении с решеткой и примесями, нельзя из-за сложного вида интеграла столкновений. Поэтому воспользуемся наиболее простым видом линейного представления интеграла столкновений — изотропным τ -приближением [8]. Данное приближение достаточно хорошо описывает столкновительную кинетику электронов в проводнике, если их рассеяние определяется примесями, а межэлектронными столкновениями можно пренебречь. Стационарное кинетическое уравнение в этом случае имеет вид

$$v_z \frac{\partial f}{\partial z} - \frac{e}{m} E(z) \frac{\partial f}{\partial v_x} + \frac{e}{m} \frac{d\Phi}{dz} \frac{\partial f}{\partial v_z} = -\nu_{\text{eff}} (f - f^{(0)}), \quad (3)$$

где $\nu_{\rm eff}$ — эффективная частота рассеяния.

Записав искомую функцию распределения традиционным образом

$$f = f^{(0)} + f^{(1)}, \qquad |f^{(1)}| \ll |f^{(0)}|$$

и представив $f^{(1)}$ в виде

$$f = \begin{cases} f_+, & v_z > 0, \\ f_-, & v_z < 0, \end{cases}$$

получаем решение (3) [9]

$$f_{(\pm)}^{(1)}(z, \mathbf{v}) = \exp\left[\mp \Lambda(\varepsilon, z)\right] \left[A_{\pm}(\varepsilon) + \frac{e}{m} \frac{\partial f^{(0)}}{\partial v_x} \int_{z}^{z} \frac{E(z') \exp[\pm \Lambda(\varepsilon, z')]}{\sqrt{\frac{2}{m}[\varepsilon + e\Phi(z')]}} dz' \right],$$
(4)

где

$$\Lambda(\varepsilon,z) = \int_{z}^{z} \frac{\nu_{\text{eff}}}{\sqrt{\frac{2}{m}[\varepsilon + e\Phi(z')]}} dz', \quad \varepsilon = \frac{1}{2}mv_{z}^{2} - e\Phi(z).$$

Здесь $A_{\pm}(\varepsilon)$ — функции интегрирования, определяемые из граничных условий задачи; интегрирование по z' ведется вдоль траектории движения электрона.

Стационарное бесстолкновительное движение электронов ПЭС в области z > 0 описывается уравнением (3) без правой части, и поэтому решение кинетического уравнения при z > 0 определяется формулой (4), в которой положено $\nu_{\rm eff} = 0$. Однако следует отметить, что в области z > 0 можно получить точное решение кинетического уравнения [10]

$$f_{\pm}(z, \mathbf{v}) = f_0 \left(v_x + \frac{e}{m} \int_0^{\tau} \tilde{E}(\tau', v_z) d\tau', v_y, \pm \sqrt{v_z^2 - \frac{2e}{m} \Phi} \right),$$

$$\tau = \int_z^{z} \frac{dz'}{\sqrt{v_z^2 + \frac{2e}{m} [\Phi(z') - \Phi(z)]}} = \Psi(v_z, z),$$

$$\tilde{E}(\tau, v_z) = E\left(\Psi^{-1}(\tau, v_z)\right),$$
(5)

где f_0 — равновесная функция распределения в отсутствие полей E и Φ .

Обозначим символами *m* и *l* функции, относящиеся соответственно к областям z < 0 и z > 0. Невозмущенные функции $f_m^{(0)}$ и $f_l^{(0)}$ есть максвелловские функции распределения

$$f^{(0)} = n(z) \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^2}{2kT}\right).$$

Толщина ПЭС достаточно мала, поэтому естественно предположить, что *E* не зависит от *z*. Значит, функция $f_{m+}^{(1)}$, соответствующая однородному потоку из глубины ПКВ, также не зависит от *z*. Следовательно, используя (4), получаем, что $A_{m+} = 0$ и $f_{m+}^{(1)}$ имеет вид

$$f_{m+}^{(1)} = \frac{eE}{m\nu_{\text{eff}}} \frac{\partial f^{(0)}}{\partial v_x}.$$

Запишем граничные условия, определяющие функции интегрирования $A_{m-}(\varepsilon)$ и $A_{l\pm}(\varepsilon)$. Используя условие непрерывности функций $f_{\pm}^{(1)}$ при заданном ε , получаем

$$z = 0: f_{l\pm}^{(1)} = f_{m\pm}^{(1)},$$

$$z = z^*: f_{l+}^{(1)} = f_{l-}^{(1)},$$
(6)

где z^* — классическая точка поворота, определяемая из условия

$$e\Phi(z^*) = -\varepsilon. \tag{7}$$

Журнал технической физики, 1999, том 69, вып. 6

С помощью (2), (4) и (6) получаем выражение для A_{m-}

$$A_{m-} = 2\Theta\left(|v_z| - \sqrt{2}\,v_e\right) \frac{eE}{m} \frac{\partial f^{(0)}}{\partial v_x} \,\tau_0^*\big(|v_z|\big),\qquad(8)$$

где

$$\tau_0^*(v_z) = \int_0^{z^*} \frac{dz'}{\sqrt{v_z^2 + \frac{2e}{m}\Phi(z')}}$$
(9)

— время движения электрона в поле Φ от поверхности $z = 0_+$ до точки поворота $z = z^*$, $\Theta(x)$ — ступенчатая функция Хевисайда, $v_e = \sqrt{kT/m}$ — тепловая скорость электронов.

Подставляя полученные выражения для A_{\pm} в (4), определяем в окончательном виде функцию распределения в ПКВ

$$f_{m+}^{(1)} = \frac{eE}{m\nu_{\text{eff}}} \frac{\partial f^{(0)}}{\partial v_x},$$

$$f_{m-}^{(1)} = \frac{eE}{m\nu_{\text{eff}}} \frac{\partial f^{(0)}}{\partial v_x} \left[1 + 2\nu_{\text{eff}} \Theta \left(|v_z| - \sqrt{2}v_e \right) \right.$$

$$\times \tau_0^*(|v_z|) \exp \left(\frac{\nu_{\text{eff}}}{|v_z|} z \right) \left].$$
(10)

Физический смысл полученного для $f_{m-}^{(1)}$ выражения вполне очевиден. За пределы ПКВ вылетают лишь те электроны, чья скорость в *z*-направлении превышает пороговое значение $\sqrt{-2e\Phi(0_+)/m} = \sqrt{2}v_e$. Электрон, покидающий ПКВ, движется в поле Φ направо вплоть до точки поворота *z*^{*}, достигая ее за время $\tau_0^*(v_z)$. Поэтому к моменту возвращения назад в ПКВ электрон приобретает дополнительный импульс $2eE\tau_0^*(v_z)$ в направлении оси *x*.

Вычислим с помощью (10) проводимость ПКВ σ_m как функцию глубины z < 0, отсчитываемой от поверхности. Воспользовавшись связью тока *j* и проводимости σ

$$j_x(z) = \sigma_m(z) E = -e \int v_x f_m^{(1)} d\mathbf{v},$$

а также представлением функци
и $f_m^{(1)}$ в виде комбинации $f_{m\pm}^{(1)},$ получаем

$$\sigma_m(z) = \sigma_m^0 \left[1 - \frac{\nu_{\text{eff}}}{n_m} \right]$$
$$\times \int_{v_z > \sqrt{2}v_e} v_x \tau_0^*(v_z) \frac{\partial f^{(0)}}{\partial v_x} \exp\left(\frac{\nu_{\text{eff}}}{v_z}z\right) d\mathbf{v} \right].$$
(11)

Здесь σ_m^0 — проводимость в глубине ПКВ. Интегрируя (11) по скоростям v_x и v_y и преобразуя с помощью (1) интеграл (9), получаем окончательное выражение для

проводимости

$$\frac{\sigma_m(z)}{\sigma_m^0} = 1 + \frac{1}{\sqrt{e}} \frac{\nu_{\text{eff}}}{\omega_p} \int_0^\infty \operatorname{erf} w \exp\left(-w^2 + \frac{\nu_{\text{eff}}z}{2v_e\sqrt{w^2 + 1/2}}\right) \times \frac{w}{\sqrt{w^2 + 1/2}} \, dw, \tag{12}$$

где erf *w* — интеграл ошибок

$$\operatorname{erf} w = \frac{2}{\sqrt{\pi}} \int_{0}^{w} e^{-\zeta} d\zeta,$$

 $\omega_p = \sqrt{e^2 n_m/m \varepsilon_0}$ — плазменная частота электронов ПКВ.

Как следует из формулы (12), приграничная проводимость прямо пропорциональна эффективной частоте рассеяния электронов в ПКВ и обратно пропорциональна плазменной частоте, соответствующей концентрации электронов проводимости. Поэтому эффект увеличения приграничной проводимости должен проявляться тем сильнее, чем меньше подвижность электронов в ПКВ и их концентрация. Частота $\nu_{\rm eff}$, определяемая рассеянием на примесях, может достигать значений $\nu_{\rm eff} \sim 10^{16} \, {
m s}^{-1}$. Если в качестве ПКВ используется полупроводник с шириной запрещенной зоны $\Delta E \simeq 3-4 \,\mathrm{eV}$, электронная компонента которого импульсно нагрета до температуры $T\simeq 0.3-1\,{\rm eV}$, то концентрация n_m может меняться в пределах $n_m\sim 3\cdot 10^{25}-3\cdot 10^{26}\,{\rm m}^{-3}$, чему соответ-ствует плазменная частота $\omega_p\sim (10^{14}-10^{15})\,{\rm s}^{-1}$. На рис. 1 представлена кривая безразмерной проводимости $\sigma_m(z)/\sigma_m^0$ как функция безразмерной координаты $\nu_{\rm eff} z/v_e$, полученная с помощью (12). Параметр $\nu_{\rm eff}/\omega_p$ выбран равным 100. Граничное значение безразмерной проводимости $\sigma_m(0)/\sigma_m^0$ равно

$$egin{aligned} & \sigma_m(0) \ \overline{\sigma_m^0} = 1 + rac{1}{2\sqrt{\pi e}} \, rac{
u_{ ext{eff}}}{\omega_p} \int \limits_0^\infty rac{e^{-r} dr}{\sqrt{r^2 + 1}(r^2 + 1/2)} \ & \simeq 1 + 0.18 rac{
u_{ ext{eff}}}{\omega_p}. \end{aligned}$$

Проводимость в случае $\gamma > 1$

Рассмотрим теперь вариант, когда электронная компонента в ПКВ образует неидеальную систему, т. е. подобна жидкости. В ПКВ (вне зависимости от степени неидеальности) проводимость определяется столкновениями электронов с решеткой, поскольку силы, обусловленные этими столкновениями, всегда много больше сил вязкого трения [11]. При этом в электронной жидкости ввиду сильного межчастичного взаимодействия на границе z = 0 не возникает разрыва f_+ и f_- . Следовательно, при $\gamma \ge 1$ проводимость ПКВ в области $z \le 0$ практически не отличается от σ_m^0 .

Рис. 1. Зависимость стационарной электропроводности ПКВ от расстояния до его поверхности.

В электронной жидкости ПЭС, заполняющей область z > 0, в отличие от электронного газа существует механизм внутренней диссипации энергии, обусловленный силами вязкого трения: на электрон действует сила $\mathbf{f}_{\text{visc}} \simeq (mn)^{-1} \eta \nabla^2 \mathbf{u}$, благодаря чему происходит диссипация приобретаемой в поле *E* энергии. Таким образом, силы вязкого трения определяют уникальную особенность ПЭС неидеальных электронов: проводимость в нем определяется электронной вязкостью [1]. По этой причине постановка задачи в рассматриваемом случае неидеальной электронной компоненты будет отличаться от постановки в пределе $\gamma \ll 1$ тем, что проводимость будет определена в той части ПЭС вблизи поверхности, где электроны образуют неидеальную кулоновскую систему.

Аналитических выражений, описывающих распределение концентрации неидеальных невырожденных электронов, не существует. Распределение неидеальных вырожденных электронов, полученное методом функционала плотности [12] в пределе T = 0, имеет вид степенной зависимости $n \propto (z/L_{TF})^{-6}$ вблизи поверхности и экспоненциальную асимптотику при больших $z (L_{TF} -$ радиус Томаса–Ферми). Но при достаточно больших температурах электроны быстро переходят в невырожденное состояние по мере уменьшения плотности с ростом z. Поэтому для расчетов будем использовать аппроксимационную степенную зависимость [1]

$$n(z) \simeq n_0(n_m) \left(1 + \frac{z}{L_h}\right)^{-h}, \qquad (13)$$

где L_h и h — эффективные пространственный масштаб и степень, зависящие от n_m и меняющиеся в диапазонах $L_{TF} \leq L_h \leq L, 6 \geq h \geq 2.$

Вдали от поверхности ПКВ (13) переходит в распределение идеального электронного газа (степень h = 2).

Для описания движения электронов ПЭС воспользуемся уравнением для моментов функции распределения [13]. Уравнение для первого момента (уравнение непрерывности) выполняется тождественно, так как дви-

Журнал технической физики, 1999, том 69, вып. 6

жение происходит вдоль оси *х*. Стационарное уравнение для второго момента имеет вид

$$en(z)E + \frac{d\pi_{xz}}{dz} = 0, \qquad (14)$$

где π_{xz} — *xz*-компонента тензора напряжений, выраженная через функцию распределения

$$\pi_{xz} = m \int (v_x - u_x) v_z f(\mathbf{v}) d\mathbf{v}, \qquad (15)$$

u_x — массовая скорость электронов вдоль поверхности.

В области ПЭС, заполненной электронной жидкостью, π_{xz} имеет вид

$$\pi_{xz} = -\eta \, \frac{du_x}{dz},\tag{16}$$

где η — коэффициент вязкости электронной жидкости.

Зависимость η от *n* получена методом молекулярной динамики [1,14]

$$\eta(n) = \eta_g \left[1 + \beta \left(\frac{n}{n_b} \right)^{\alpha} \right], \qquad (17)$$

где η_g — вязкость электронного газа, не зависящая от n; n_b — концентрация, определяемая из условия $\gamma(n_b) \simeq 1$; α и β — подгоночные параметры, меняющиеся от нуля до единицы.

Таким образом, если электроны ПКВ образуют сильно неидеальную кулоновскую систему, то ПЭС вблизи поверхности представляет собой слой электронной жидкости с распределением концентрации (13). Движение жидкости в поле E описывается уравнением (14) совместно с (16). При достижении условной границы z_b (точка, где $n \simeq n_b$) происходит переход к идеальному электронному газу, заполняющему область $z \ge z_b$ и распределенному по закону

$$n(z) \simeq n_b \left(1 + \frac{z - z_b}{L_b}\right)^{-2},\tag{18}$$

где $L_b = 2D(n_b)$.

Описание движения электронов при $z \ge z_b$ осуществляется с помощью уравнения (14) с тензорной компонентой (15).

Координата z_b выбрана таким образом, что при любом $0 < z \leq z_b$ гидродинамическое приближение описывает поведение электронной жидкости с достаточной степенью точности. Проинтегрируем уравнение (14) по z от $z = z_b$ до $z = \infty$. С учетом (16) и (18) получим

$$eEL_bn_b + \pi_{xz}(\infty) + \eta(z_b) \frac{du_x}{dz}\Big|_{z_b} = 0.$$
(19)

Покажем, что $\pi_{xz}(\infty) = 0$. Для этого вычислим $\pi_{xz}(z)$ при $z > z_b$. Электронный газ в данной области является идеальным и бесстолкновительным, поэтому можно воспользоваться решением бесстолкновительного кинетического уравнения (15). В соответствии с (5)

функция распределения электронов f в точке z имеет вид

$$f(z, \mathbf{v}) = \begin{cases} f^{(0)}(z, v_x - u_x + \delta u_x, v_y, v_z), & v_z > 0, \\ f^{(0)}(z, v_x - u_x - \delta u_x, v_y, v_z), & v_z < 0, \end{cases}$$
(20)

где $f^{(0)}$ — максвелловская функция распределения, u_x и δu_x равны

$$u_{x} = u_{x}(z_{b}) + \frac{eE}{m} \int_{z_{b}}^{z^{*}} \frac{dz'}{\sqrt{v_{z}^{2} + \frac{2e}{m} [\Phi(z') - \Phi(z)]}},$$

$$\delta u_{x} = \frac{eE}{m} \int_{z}^{z^{*}} \frac{dz'}{\sqrt{v_{z}^{2} + \frac{2e}{m} [\Phi(z') - \Phi(z)]}},$$
 (21)

где $u_x(z_b)$ — массовая скорость на границе z_b . Точка поворота z^* определяется из условия

$$e\Phi(z^*) = e\Phi(z) - \frac{1}{2}mv_z^2.$$

Подставляя (20) и (21) в (15), после преобразований получаем искомое выражение для π_{xz}

$$\pi_{xz}(z) = 4\sqrt{2} n(z) v_e \frac{eE}{\omega_p(z)} \int_0^\infty w \operatorname{erf} w e^{-\omega} dw$$
$$= eEL_b \sqrt{n_b n(z)}, \qquad (22)$$

где n(z) соответствует (18).

Таким образом, $\pi_{xz}(z) \to 0$ при $z \to \infty$ и (19) принимает вид

$$\eta(z_b) \left. \frac{du_x}{dz} \right|_{z_b} = -eEL_b n_b. \tag{23}$$

Выражение (23) нужно рассматривать как граничное условие, накладываемое в точке z_b на течение электронной жидкости. Второе вполне очевидное условие

$$[u_x]\Big|_{z=0} = 0 \tag{24}$$

задается на границе ПКВ и требует непрерывности продольной скорости u_x . Уравнение, описывающее течение в области $0 \le z \le z_b$, после подстановки (13), (16) и (17) в (14) имеет вид

$$\frac{d}{d\xi}\left[\left(1+\beta\tilde{n}^{\alpha}(1+\xi)^{-\alpha h}\right)\frac{du}{d\xi}\right] = \frac{en_0L_h^2E}{\eta_g}(1+\xi)^{-h}, \quad (25)$$

где $\xi = z/L_h$, $\xi_b = z_b/L_h$, а $\tilde{n} = n_0/n_b = \gamma^3(n_m)$ (символ *x* здесь и далее опущен).

Интегрируя (25) с учетом граничных условий (23) и (24) и используя связь $\sigma E = -enu$, получаем следующее

выражение для проводимости ПЭС:

$$\frac{\sigma(\xi)}{\sigma_m^0} = \frac{n_0}{n_m} (1+\xi)^{-h} \bigg[1 + \frac{e^2 n_0^2 L_h^2}{\eta_g \sigma_m^0 (h-1)} \\ \times \int_0^{\xi} \frac{(1+\xi')^{1-h} - \tilde{n}^{-1} (L_b/L_h)}{1+\beta \tilde{n}^{\alpha} (1+\xi')^{-\alpha h}} d\xi' \bigg].$$
(26)

Интеграл в (26) может быть выражен через неполные бета-функции, но применять для дальнейшего анализа полученное в этом случае выражение несколько неудобно, поэтому воспользуемся следующим соображением. При больших $\gamma(n_m)$ параметр \tilde{n} велик, следовательно, единицей в знаменателе интеграла (26) можно пренебречь вплоть до границы ξ_b , на которой $\tilde{n}^{\alpha}(1+\xi)^{-\alpha h} \simeq 1$. По тем же соображениям можно пренебречь вторым слагаемым в числителе подынтегрального выражения. В результате интегрирования получаем окончательное выражение для безразмерной проводимости

$$\frac{\sigma(\xi)}{\sigma_m^0} = \frac{n_0}{n_m} (1+\xi)^{-h} \left[1 + \frac{\beta^{-1} \tilde{n}^{-\alpha} \Theta}{(h-1)(2-(1-\alpha)h)} \times \left[(1+\xi)^{2-(1-\alpha)h} - 1 \right] \right].$$
(27)

где введено обозначение

$$\Theta = \frac{e^2 n_0^2 L_h^2}{\eta_g \sigma_m^0}$$

При решении (25) предполагалось, что температура электронной жидкости не меняется вдоль координаты ξ . Подобное предположение является вполне оправданным в том случае, если тепловая скорость электронов в ПЭС намного превосходит их массовую скорость. Действительно, если воспользоваться полученным решением (27), то, как следует из стационарного уравнения теплопроводности

$$\kappa \, \frac{d^2 T}{dz^2} + \sigma E^2 = 0$$

(где $\kappa \sim v_e \langle r \rangle$ — коэффициент температуропроводности), характерный масштаб изменения температуры $l_T \sim (v_e/|u|) \langle r \rangle \gg L_h$, т.е. в приближении малых возмущений температуру действительно можно считать однородной.

Рассмотрим, как меняется решение (27) в зависимости от параметров задачи. Если $\Theta > \beta \tilde{n}^{\alpha} h(h-1)$ и $h < 2/(2-\alpha)$, то проводимость ПЭС монотонно возрастает по мере удаления от границы ПКВ; при обратных неравенствах проводимость монотонно убывает. Если $\Theta > \beta \tilde{n}^{\alpha} h(h-1)$ и $h > 2/(2-\alpha)$, то проводимость вначале возрастает, а затем, достигнув максимума, начинает убывать; при обратных неравенствах проводимость

Рис. 2. Зависимость стационарной электропроводности ПЭС от расстояния до поверхности проводника: $\beta^1 \bar{n}^{-\alpha} \Theta$: *1*, 2 — 100; 3 — 0.1, 4 — 1; *h* = 1.2 (*1*); 2 (2, 4); 1.2 (3).

сначала убывает, а затем начинает возрастать. Экстремальное значение проводимости достигается в точке

$$\xi_{ex} = \left[rac{\Theta - eta ilde{n}^lpha (h-1)[2-(1-lpha)h]}{\Theta[(2-lpha)h-2]}h
ight]^{rac{1}{2-(1-lpha)h}} - 1.$$

На рис. 2 представлены результаты расчетов, выполненных по формуле (27), котолрые иллюстрируют описанное поведение кривой $\sigma = \sigma(\xi)$ (параметр $\alpha = 0.5$, $n_0/n_m = 1/e$). Поскольку α в зависимости от $\gamma(n_m)$ меняется в пределах от нуля до единицы, а $h \ge 2$, то в действительности могут быть реализованы только те случаи, которым соответствуют кривые 2 или 4.

Заключение

Итак, на основании полученных результатов можно сделать следующие выводы. При неравновесном нагреве идеальной ($\gamma \ll 1$) электронной компоненты в полупроводнике до температур $T \ge 0.3 \,\mathrm{eV}$ на временах $t \le 10^{-11} \,\mathrm{s}$ электронная проводимость приграничного слоя ПКВ толщиной порядка v_e/v_{eff} может намного превосходить проводимость в глубине нагреваемого образца. Этот эффект может быть достигнут, если v_{eff} определяется рассеянием на примесях и ее величина составляет порядка $v_{\mathrm{eff}} \sim 10^{15} - 10^{16} \,\mathrm{s}^{-1}$.

В случае, если электроны ПКВ образуют сильно неидеальную кулоновскую систему, проводимость ПЭС вблизи границы ПКВ может намного превосходить проводимость σ_m^0 . Как и в случае идеальной электронной компоненты, данная ситуация может быть реализована, если подвижность электронов в ПКВ окажется достаточно маленькой ($\Theta \propto \nu_{\text{eff}}$).

Используя полученный эффект, можно добиться эффективного нагрева приграничных слоев ПКВ толщиной несколько Å, прикладывая вдоль его поверхности постоянное электрическое поле. С ростом $\nu_{\rm eff}$ данный эффект должен проявляться сильнее не только из-за увеличения приграничной проводимости, но и потому, что теплопроводность ПКВ пропорциональна ν_{eff}^{-1} и перенос тепла в глубь ПКВ в этом случае будет замедлен.

Список литературы

- Ивлев А.В., Павлов К.Б., Яковлев М.А. // ЖТФ. 1994.
 Т. 64. Вып. 9. С. 50–59.
- [2] Ивлев А.В., Яковлев М.А. // ЖТФ. 1995. Т. 65. Вып. 4. С. 142–149.
- [3] Ивлев А.В., Яковлев М.А., Борденюк А.Н. // ЖТФ. 1998.
 Т. 68. Вып. 8. С. 48–53.
- [4] Анисимов С.И., Имас Я.С., Романов Г.С. и др. Действие излучения большой мощности на металлы. М.: Наука, 1970. 272 с.
- [5] Кудрин Л.П. Статистическая физика плазмы. М.: Атомиздат, 1974. 496 с.
- [6] Павлов К.Б., Яковлев М.А. // Изв. АН БССР. Сер. физ. 1989. № 1. С. 84–90.
- [7] Афанасьев Ю.В., Канавин А.П. // Квантовая электрон. 1983. Т. 10. № 11. С. 2267–2271.
- [8] Лифшиц И.М., Азбель М.Я., Каганов М.И. Электронная теория металлов. М.: Наука, 1971. 416 с.
- [9] Либерман М.А., Мейерович Б.Э., Питаевский Л.П. // ЖЭТФ. 1972. Т. 62. Вып. 5. С. 1737–1744.
- [10] Зайцев В.Ф., Полянин А.Д. Справочник по дифференциальным уравнениям с частными производными. М.: Международная программа образования, 1996. 496 с.
- [11] Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. 684 с.
- [12] Теория неоднородного электронного газа / Под ред. С. Лундквиста, Н. Марча. М.: Мир, 1987. 400 с.
- [13] Власов А.А. Статистические функции распределения. М.: Наука, 1966. 356 с.
- Bernu B., Vieillefosse P. // Phys. Rev. A. 1978. Vol. 18. N 5.
 P. 2345–2355.