Фотопреобразование в гетероконтактах CdTe и его аналогов с белком

© Ю.В. Рудь, В.Ю. Рудь*, И.В. Боднарь[†], В.В. Шаталова[†], Г.А. Ильчук[‡]

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

[†] Белорусский государственный университет информатики и радиоэлектроники,

[‡] Государственный университет "Львовская политехника",

293000 Львов, Украина

(Получена 21 декабря 1998 г. Принята к печати 18 февраля 1999 г.)

На основании кристаллов CdTe и его тройных аналогов созданы фоточувствительные структуры полупроводник/естественный белок. Изучены фотоэлектрические свойства полученных структур в естественном и линейно поляризованном излучении. Установлен широкополосный характер фоточувствительности структур полупроводник/белок в диапазоне между шириной запрещенной зоны полупроводника и энергией ≈ 3.5 эВ, которая принята за псевдощель в зонном спектре белка.

Показано, что естественный фотоплеохроизм полупровдника воспроизводится и для его контакта с белком. Обсуждаются перспективы применения фотосенсоров нового класса.

Введение

Свойства различных классов гетероконтактов (ГК) широко изучаются, открывая все новые и на первых этапах неожиданные возможности этих своеобразных объектов [1]. Однако наряду с твердотельными структурами полупроводник/полупроводник и полупроводник/металл все более нарастают исследования контакта полупроводников с электролитами и веществами биологического происхождения [2–4]. В предлагаемой работе сообщается о создании нового класса преобразователей, представляющих собой контакт теллурида кадмия и его тройных аналогов с естественным белком.

В качестве полупроводниковых материалов для создания ГК применялись кристаллы CdTe и их тройные аналоги из группы I–III–VI₂, которая формально может быть представлена как результат замещения двух атомов второй группы на атомы из первой и третьей групп периодической системы элементов (см. таблицу).

Экспериментальная часть

Кристаллы CdTe выращивались двумя методами. Один состоял в зонной перекристаллизации расплава с близким к стехиометрии CdTe составом в контролируемой паровой фазе. Этот метод позволял получить электрически однородные кристаллы *n*-типа проводимости, в которых холловская подвижность с понижением температуры ниже 300 К обнаруживала характерный для решеточного рассеяния рост холловской подвижности. Пластины из таких слитков получались скалыванием и поэтому имели зеркальные плоскости (001), которые не нуждались в дополнительной обработке. Второй тип образцов выращивался газофазным методом, что приводило к легированию CdTe йодом. Получаемые этим методом кристаллы были полуизолирующими и также не нуждались в обработке поверхности.

Кристаллы тройных соединений $I-III-VI_2$ выращивались из расплава (CuInSe₂, CuInS₂ и AgInS₂), либо из газовой фазы (CuInS₂ и CuGaS₂). Поверхность последних не нуждалась в обработке и имела ориентацию (112), тогда как полученные из расплава образцы после резки обрабатывались механически, а затем химически полировались.

В результате комплексного исследования была разработана следующая техника создания нового класса фотопреобразователей. На стеклянную пластину с полупрозрачным слоем металла (Мо, Ni, $d \cong 0.5$ мкм) помещалась капля естественного белка. Пластина полупроводинка вводилась в контакт с поверхностью белка таким образом, что жидкий белок "зажимался" между металлизированной поверхностью стекла и пластиной полупроводника, заполняя предоставляемый ему зазор.

Фотоэлектрические свойства контактов CdTe и его тройных аналогов I–III–VI₂ с белком (T = 300 K)

Соединение	Тип проводимости	$1/R \cdot e$, cm ⁻³	$\hbar \omega_1$, эВ	S , $\Im B^{-1}$	S_u , B/BT	<i>S</i> _{<i>i</i>} , мА/Вт	$\delta_{1/2}$, эВ
CdTe	п	10 ¹⁶	1.51	38	10 ³	45	1.82
		10 ⁸	1.48	90	10^{4}	—	
CuInSe ₂	р	$3 \cdot 10^{17}$	1.02	50	570	18	2.00
CuInS ₂	р	$2\cdot 10^{16}$	1.53	60	$1 \cdot 10^4$	7	2.02
CuGaS ₂	р	10^{7}	2.48	40	$3 \cdot 10^3$	—	1.84

²²⁰⁰²⁷ Минск, Белоруссия

Рис. 1. Конструкция и схема освещения гетероконтакта полупроводник/белок (1 — стеклянная пластина, 2 — полупрозрачный слой металла, 3 — слой естественного белка, 4 — полупроводник, 5 — диэлектрический лак).

После завершения процедуры посадки полупроводника на контакт с подложкой через слой белка положение пластины фиксировалось относительно стекла с помощью диэлектрического лака. Собранная таким образом система полупроводник / белок / металл (рис. 1) снабжалась электрическими контактами и позволяла исследовать фотоэлектрические явления в двух различных геометриях освещения.

Обсуждение результатов

Стационарная вольт-амперная характеристика одной из созданных структур приведена на рис. 2. Для всех изученных ГК с применением кристаллов *n*- и *p*-типа проводимости при толщинах слоя белка $\cong 10-50$ мкм вольт-амперные характеристики проявляют четкий эффект выпрямления, которое для разных полупроводников изменялось в пределах 1.8–4.5 при напряжениях до 5 В. Обратная характеристика, как правило, подчиняется степенному закону с близким к единице показателем. Остаточное сопротивление структур сильно зависит от свойств полупроводников и изменяется в пределах от 10^3 до 10^{10} Ом при 300 К. В процессе исследований характеристики полученных структур практически не изменялись и хорошо воспроизводились.

При освещении гетероконтактов к различным полупроводникам (см. таблицу) воспроизводимо наблюдается фотовольтаический эффект, причем его знак сохраняется неизменным при обеих геометриях освещения, перемещениях светового зонда вдоль поверхности структур (диаметр $\cong 0.2$ мм) и изменении энергии падающего излучения во всей области фоточувствительности каждой из исследованных гетеропар. Важно подчеркнуть, что фоточувствительность всегда преобладает при освещении полученных гетероконтактов со стороны слоя белка. В таблице приведены максимальные значения вольтовой S_u и токовой S_i фоточувствительности. Сопоставление этих данных с известными для других классов фотопреобразователей на кристаллах аналогичного качества [2,5–7] позволяет считать, что новые ГК уже на начальной стадии их разработки не уступают известным.

Типичные спектральные зависимости относительной квантовой эффективности фотопреобразования η для полученных ГК приведены на рис. 3. Из него видно, что фоточувствительность ГК на основе CdTe и его тройных аналогов только при освещении со стороны белка имеет широкополосный характер, обнаруживая максимальные

Рис. 2. Стационарная вольт-амперная характеристика гетероконтакта *n*-CdTe/белок при T = 300 К. (Пропускное направление отвечает положительной полярности внешнего смещения на белке).

Рис. 3. Спектральные зависимости относительной квантовой эффективности фотопреобразования гетероконтактов полупроводник/белок в естественном свете при T = 300 K. ($I - \text{CuInSe}_2$, 2 - CdTe, $3, 4 - \text{CuInS}_2$, $5 - \text{AgInS}_2$, $6 - \text{CuGaS}_2$. Освещение со стороны белка).

Физика и техника полупроводников, 1999, том 33, вып. 10

Рис. 4. Поляризационная индикатриса фототока короткого замыкания i_{φ} гетероконтакта CuGaS₂/белок при T = 300 К. (Освещение вдоль нормали к плоскости (112) CuGaS₂, $\hbar\omega = 2.48$ зВ).

величины η в интервале между шириной запрещенной зоны E_G полупроводника [8] и коротковолновым спадом Это типичный фоточувствительности вблизи 3.5 эВ. для идеальных твердотельных гетеропереходов "эффект окна" [9], который в данном случае не потребует тщательнейшего выбора полупроводника с определенными параметрами кристаллической решетки, типом структуры и т.д. Проявление во всех ГК коротковолновой границы вблизи 3.5 эВ позволяет принять эту энергию за псевдоцель в энергетическом спектре белка. Длинноволновая граница фоточувствительности исследованных ГК подвижна и определяется величиной Е_G в используемом для ГК полупроводнике. Длинноволновый край η экспоненциальный и его крутизна $S = \delta(\ln \hbar \omega) / \delta(\hbar \omega)$ высокая, что отвечает прямым межзонным переходам в этих полупроводниках. Экспоненциальный рост η завершается при энергии $\hbar\omega_1$, которая близка к E_g полупроводника [8]. Следует отметить, что величина $\hbar\omega_1$ зависит и от легирования полупроводника. Так, в случае кристаллов CdTe, когда процесс роста из газовой фазы сопровождается внедрением примеси йода, величина $\hbar\omega_1$ смещается к 1.47-1.49 эВ из-за участия в фотопроводимости уровней мелких центров. В случае ГК на основе CuGaS₂ с ориентацией контактирующей плоскости (112) на длинноволновом краю η при освещении естественным светом проявляются несколько ступенек, которые обусловлены расщеплением уровней в тетрагональном поле [6]. На примере ГК из CuInS₂ (рис. 3) демонстрируется также и характерный для поверхностной рекомбинации носителей заряда выраженный коротковолновой спад η (кривая 3). Он проявляется в ГК, получаемых с использованием механически обработанных поверхностей полупроводника, тогда как при использовании послеростовой естественной плоскости (112) коротковолновой спад η исчезает (рис. 3, кривая 4). Эта закономерность была подтверждена и при создании ГК из CdTe и CuInSe₂. В результате изменений E_G и состояния поверхности полупроводника меняется полная ширина спектров η на их полувысоте $\delta_{1/2}$. Как следует из таблицы, наибольшие значения $\delta_{1/2}$ получены при создании ГК из CuInSe₂ и CuInS₂.

При переходе к освещению ГК со стороны полупроводников спектры η становятся узкоселективными с максимумом вблизи E_G , что является естественным следствием влияния сильного поглощения излучения в прямозонных кристаллах при $\hbar \omega \ge E_G$.

Для нового класса ГК, созданных на ориентированных анизотропных полупроводниках, можно было ожидать также проявление естественного фотоплеохроизма [10], который был изучен на примере структур CuGaS₂ / белок.

Как видно из рис. 4, при освещении этих структур линейно поляризованным излучением (ЛПИ) вдоль нормали к плоскости (112) поляризационная индикатриса фототока короткого замыкания i_{φ} обнаруживает характерную для одноосных полупроводников периодическую зависимость от азимутального угла φ между вектором электрического поля световой волны **E** и тетрагональной осью **c** кристалла

$$i_{\varphi} = i^{\parallel} \cos^2 \varphi + i^{\perp} \sin^2 \varphi, \qquad (1)$$

где i^{\parallel} измеряется в поляризации **E** \parallel **c**, а i^{\perp} — **E** \perp **c**. В связи с тем что плоскость (112) некомпланарна **c**, поляризация **E** \parallel **c** в этих экспериментах реализуется

Рис. 5. Спектральная зависимость коэффициента естественного фотоплеохроизма P_N гетероконтакта CuGaS₂/белок при T = 300 K. На вставке — зонная структура и правила отбора для межзонных переходов в центре зоны Бриллюэна.

лишь номинально. Поэтому полученное экспериментально отношение $i^{\parallel}/i^{\perp} \approx 2$ на самом деле еще выше.

Главный вывод, который следует сделать из поляризационных индикатрис i_{φ} , состоит в том, что, как и в случает твердотельных структур [6], максимум фототока отвечает поляризации **E** || **с** и, следовательно, проникновение ЛПИ в активную область ГК происходит без искажений параметров падающего излучения.

Спектральный контур естественного фотоплеохроизма P_N ГК CuGS₂/белок (рис. 5) также оказался близким к установленному для барьеров Шоттки In/CuGaS₂ [6]. В соответствии с правилами отбора для межзонных *A*-переходов естественный фотоплеохроизм в структурах CuGaS₂/белок обнаруживает положительный знак и достигает максимума вблизи энергии *A*-перехода. С переходом в коротковолновый диапазон начинаются преимущественно разрешенные в поляризации $\mathbf{E} \perp \mathbf{c}$ оптические *B*- и *C*-переходы из отщепленных подзон валентной зоны, что и определяет спад P_N (рис. 5).

Из рис. 5 видно, что максимум P_N несколько смещен в длинноволновую область относительно энергии *А*-переходов. С учетом [11] этот факт указывает на присутствие в используемых кристаллах CuGaS₂ мелких центров, которые вызывают сравнимую с межзонными *А*-переходами анизотропию фотопроводимости. Положительный знак P_N при $\hbar\omega < E_G$ позволяет считать, что ответственные за это поглощение уровни сформированы из волновых функций ближайших свободных зон.

Заключение

Таким образом, гетероконтакты бинарных полупроводников II-VI (на примере CdTe) и их тройных аналогов I-III-VI2 с естественным белком обладают фотовольтаическим эффектом и могут найти применение в качестве широкополосных фотосенсоров оптических излучений, а также позволят наблюдать изменения в оптических свойствах белка. В новом классе фотопреобразователей четко проявилась установленная еще при исследованиях кристаллов различных групп фундаменальная закономерность, которая сводится к тому, что усложнение атомного состава в ряду алмазоподобных фаз является источником новых функциональных зависимостей, приводящих к созданию новых приборов. Настоящая работа в контексте сформулированного выше показывает, как переход от бинарной фазы (CdTe) к тройным соединениям позволяет обеспечить в таких ГК новую функциональную способность, состоящую в появлении поляризационной фоточувствительности.

Список литературы

- [1] Ж.И. Алферов. ФТП, **32**(1), 3 (1998).
- [2] Ю.А. Гуревич, Ю.В. Песков. Фотоэлектрохимия полупроводников (М., Наука, 1983).

- [3] Ж. Симон, Ж.-Ж. Андре. Молекулярные полупроводники. Фотоэлектрические свойства и солнечные элементы. [Пер. с англ.] (М., Мир, 1988).
- [4] V.Yu. Rud', Yu.V. Rud', V.Ch. Shpunt, S. Iida. Inst. Phys. Conf. Ser. No 152 [ICTVC-11, Salford, 1997] (IOP Publishing Ltd., 1998) p. 997.
- [5] Н.Н. Константинова, В.Д. Прочухан, Ю.В. Рудь, М.А. Таиров. ФТП, 22(6), 1699 (1988).
- [6] И.В. Боднарь, В.Ю. Рудь, Ю.В. Рудь. ФТП, 28(10), 2007 (1994).
- [7] В.Ю. Рудь, Ю.В. Рудь, В.Х. Шпунт. ФТП, **31**(1), 97 (1997).
- [8] Физико-химические свойства полупроводниковых веществ: Справочник (М., Наука, 1979).
- [9] Б.Л. Шарма, Р.К. Пурохит. Полупроводниковые гетеропереходы. [Пер. с англ.] (М., Сов. радио, 1979).
- [10] Ф.М. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, 33(5), 513 (1999).
- [11] Ю.В. Рудь. Изв. вузов СССР. Физика, 29(1), 68 (1986).

Редактор В.В. Чалдышев

The phototransformation in heterocontacts of CdTe and its analogs to proteins

Yu.V. Rud, V.Yu. Rud*, I.V. Bodnar[†], V.V. Shatalova[†], G.A. Il'chuk[‡]

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
* State Technical University, 195251 St. Petersburg, Russia
† Belarus State University of Informatics and Radioengineering, 220027 Minsk, Belarus
‡ State University "The Lviv Polytechnica",

293000 Lvov, the Ukraine