Экситонные молекулы, захваченные квантовыми точками и изоэлектронными примесями в многодолинных полупроводниках

© А.А. Рогачев¶

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 1 марта 1999 г. Принята к печати 2 марта 1999 г.)

Впервые дано теоретическое и экспериментальное рассмотрение экситонных молекул, содержащих от двух до шести экситонов, захваченных квантовыми точками или изоэлектронными примесными центрами. Существование таких экситонных молекул возможно только в многодолинных полупроводниках. Рассмотрена модель экситонной молекулы, которая справедлива в случае, когда количество долин в зоне проводимости и в валентной зоне велико. Обсуждена кинетика образования экситонных молекул. Существенной особенностью экситонных молекул, связанных на квантовых точках, является наличие туннельных переходов экситонов между квантовыми точками.

Свойства экситонных молекул и экситонной жидкости в однодолинных и многодолинных полупроводниках существенно различаются. Для однодолинных полупроводников термины экситонная молекула и биэкситон являются синонимами [1,2]. Экситонная жидкость в однодолинных полупроводниках является изолятором [3,4]. В многодолинных полупроводниках возможны сильно связанные молекулы, состоящие из двух, трех и вплоть до шести экситонов [5,6]. Соответственно экситонная жидкость в многодолинных полупроводниках во всех известных случаях обладает металлическими свойствами. Главная причина существенного различия основных физических свойств экситонных молекул заключается в том, что многодолинные полупроводники имеют g-фактор вырождения больше чем 2, как в зоне проводимости, так и в валентной зоне. Часто используемые в литературе термины — экситонные молекулы, экситонные комплексы и полиэкситоны следует считать синонимами. Изоэлектронные примеси и искусственно созданные квантовые точки в многодолинных полупроводниках захватывают не только электроны, дырки и экситоны, но и экситонные молекулы, состоящие из большого количества экситонов.

Размеры экситонных молекул меньше, чем радиус свободного экситона [5,7]. Спектры люминесценции связанных экситонных молекул оказались аналогичными спектрам свободных экситонных молекул [8]. Каждая линия в спектре соответствует уменьшению количества экситонов в молекуле на один, т.е. $E_z \to E_{z-1}$. Линия люминесценции, соответствующая *z*-экситонам, находится в более красной области спектра, чем линия, соответствующая (z - 1)-экситону. Расстояние между спектральными линиями, соответствующими люминесценции экситонных молекул, связанных на квантовых точках, как правило, больше, чем для свободных молекул. Исследование люминесценции кристаллов GaP, легированных висмутом (GaP:Bi), представляет особый интерес, так как в этих кристаллах изовалентная примесь висмута может захватывать как один электрон, так и одну дырку

с энергией связи меньше, чем 0.05 эВ [8]. Эта примесь в данной статье будет рассматриваться как квантовая точка.

В хорошо изученных полупроводниках, таких как Si, Ge и GaP, энергия связи свободных экситонов и экситонных молекул меньше энергии расщепления валентной зоны за счет спин-орбитального взаимодействия. Поэтому основное состояние дырок имеет фактор вырождения, равный 4. Энергия захвата экситонной молекулы квантовой точкой (в расчете на один экситон) превышает энергию спин-орбитального взаимодействия в валентной зоне (0.05 эВ в GaP) и поэтому мы будем пренебрегать этим взаимодействием. Тогда квантовые точки могут захватывать шесть экситонов вследствие того, что валентная зона шестикратно вырождена, а зона проводимости имеет структуру "спина верблюда" с величиной "горба" около 0.05 эВ. Из исследования спектров люминесценции мы получаем энергию E_z, которая связана с энергией основного состояния F_z в молекуле следующим соотношением:

$$F_z = \frac{1}{z} \sum_{z'=1}^{z'=z} E_{z'},$$
 (1)

где z есть количество экситонов в молекуле ($z \le 6$). Соответственно положение E_z в спектре связано с энергией основного состояния следующим образом:

$$E_z = zF_z - (z-1)F_{z-1}.$$
 (2)

Рассмотрим простую модель экситонной молекулы, в которой одноэлектронная волновая функция одинакова для электронов и дырок и обладает сферической симметрией [5,7]. Мы будем считать также, что $m_e = m_h = m_{ex}$. Из соображений простоты возьмем пробную волновую функцию водородоподобной:

$$\Psi(R) = \sqrt{\frac{1}{\pi r^3}} e^{-\frac{R}{r}},$$

где *r* — эффективный радиус экситонной молекулы. Кинетическая энергия электронно-дырочной пары тогда

[¶] E-mail: arog@les.ioffe.rssi.ru

равна

$$E_k = \frac{\hbar^2}{2m_h r^2} + \frac{\hbar^2}{2m_e r^2} = \frac{\hbar^2}{m_{\rm ex} r^2}.$$

Так как волновые функции электронов и дырок идентичны, в приближении Харти плотность заряда равна нулю ($\rho(R) = 0$). Если в экситонной молекуле число экситонов велико, то обменной энергией можно пренебречь, так как встречающиеся электроны и дырки имеют, как правило, разные волновые числа (спины или номера долин). Корреляционная потенциальная энергия на одну пару электрон-дырка (e-h) приблизительно равна $e^2/\varepsilon L$, где

$$L = \sqrt{\frac{\varepsilon E_k}{6\pi e^2 n_{\rm ex}}}.$$

Эффективная плотность *e*-*h*-пар в молекуле равна

$$n_{\rm ex}=\frac{2\pi}{9}zr^{-3}.$$

Энергия на одну e-h-пару в экситонной молекуле может быть записана как

$$F_{z} = -\frac{e^{2}}{\varepsilon L} - A \int_{0}^{t} 4\pi R^{2} |\Psi(R)|^{2} dR + E_{k}$$

= $-\frac{e^{2}}{\varepsilon L} - A \left[1 - \left(\frac{2l^{2}}{r^{2}} + \frac{2l}{r} + 1 \right) \exp\left(-\frac{2l}{r} \right) \right] + E_{k}, \quad (3)$

где *l* — радиус квантового колодца. Радиус экситонной молекулы *r* определяется из условия

$$\frac{dF_z}{dr} = 0.$$

Коэффициент A выбирается из условия, что если в уравнении (3) для F_z убрать кулоновскую энергию (e = 0), то величина должна F_z получиться очень маленькой по абсолютной величине, но все же отрицательной (слабая связь). Ширина квантового колодца выбирается такой, чтобы величина F_z , получаемая из уравнения (3), совпадала с экспериментом. Для совпадения экспериментальных (рис. 1) и теоретических (рис. 2) результатов величина l должна быть выбрана равной 6 Å, т. е. порядка 0.1 радиуса экситона.

Концентрация атомов Ві в кристалле GaP была приблизительно равна 10^{17} см⁻³, что делает туннелирование главным способом диффузии связанных на примеси экситонов между атомами висмута. Образование экситонов из электронов и дырок, созданных освещением образца, является самым быстрым процессом и близко ко времени остывания созданных светом e-h-пар (10^{-12} с). Захват экситонов на атомы примеси Ві требует времени порядка 10^{-11} с, что меньше времени жизни связанных экситонов. Таким образом, можно считать, что освещение образца мощным источником света непосредственно создает экситоны, захваченные на атомы примеси. Эти связанные экситоны посредством туннелирования двигаются

Рис. 1. Спектр люминесценции GaP: Ві из работы [8]. Концентрация Ві примерно равна 10^{17} см⁻³, T = 2 К. Пики спектра люминесценции с энергией 2.06, 2.09, 2.12 и 2.14 эВ соответствуют различным связанным экситонным молекулам.

Рис. 2. Расчет энергии экситонных молекул. Положения линий в спектрах люминесценции отсчитываются от энергии свободных электронов и дырок (E_z). Сплошная линия представляет энергию пары электрон-дырка с $E_k = 0$, штриховая линия — энергию связи экситона. I — энергия в спектре свободных экситонных молекул; 2 — энергия связанных на атомах Ві экситонных молекул с разным количеством пар электрон-дырка (или экситонов).

по кристаллу. Если связанный экситон оказывается на примесном атоме, где уже есть захваченный экситон, то образуется захваченный биэкситон. В принципе связанные биэкситоны тоже могут диффундировать посредством туннелирования, но барьер оказывается при этом более высоким, и диффундирующая частица (биэкситон) оказывается более тяжелой. Аналогичные соображения могут быть применены и к образованию других связанных экситонных молекул. При низкой температуре за счет туннелирования происходит только увеличение количества экситонов в связанной молекуле, так как при образовании большой молекулы теряется энергия и обратный процесс невозможен. Основным каналом рекомбинации связанных экситонных молекул является оже-рекомбинация.

Наиболее интенсивной становится оже-рекомбинация в захваченных экситонных молекулах, имеющих наибольшее количество e-h-пар, и где, соответственно, плотность e-h-пар является наибольшей. Рассматривая упрощенную модель рекомбинации, можно таким образом учитывать только оже-рекомбинацию в гексаэкситонах. Учитывая сделанные допущения, систему кинетических уравнений можно записать в виде

$$\frac{dn_{\text{ex}}}{dt} = I + 5\frac{n_6}{\tau} - 2\alpha_2 n_{\text{ex}} n_{\text{ex}} - \alpha_3 n_{\text{ex}} n_b - \alpha_4 n_{\text{ex}} n_3 - \alpha_5 n_{\text{ex}} n_4 - \alpha_6 n_{\text{ex}} n_5,$$

$$\frac{dn_b}{dt} = \alpha_2 n_{\text{ex}} n_{\text{ex}} - \alpha_3 n_{\text{ex}} n_b, \quad \frac{dn_3}{dt} = \alpha_3 n_{\text{ex}} n_b - \alpha_4 n_{\text{ex}} n_3,$$
$$\frac{dn_4}{dt} = \alpha_4 n_{\text{ex}} n_3 - \alpha_5 n_{\text{ex}} n_4, \quad \frac{dn_5}{dt} = \alpha_5 n_{\text{ex}} n_4 - \alpha_6 n_{\text{ex}} n_5,$$

$$\frac{dn_6}{dt} = \alpha_6 n_{\rm ex} n_5 - \frac{n_6}{\tau},\tag{4}$$

где I — интенсивность света, возбуждающего люминесценцию; α_n — коэффициенты захвата; τ — время жизни экситонов в гексамолекулах; n_b , n_3 , n_4 , n_5 и n_6 концентрации соответственно биэкситонов, триэкситонов, тетраэкситонов, пентаэкситонов и гексаэкситонов, захваченных на квантовые точки. Стационарное решение имеет вид

$$n_{\rm ex} = \sqrt{\frac{I}{\alpha_2}}, \quad n_b = \frac{I}{\alpha_3 n_{\rm ex}}, \quad n_3 = \frac{I}{\alpha_4 n_{\rm ex}},$$
$$n_4 = \frac{I}{\alpha_5 n_{\rm ex}}, \quad n_5 = \frac{I}{\alpha_6 n_{\rm ex}}, \quad n_6 = I\tau. \quad (5)$$

Характерной чертой этого решения является то, что отношения n_b/n_5 , n_4/n_5 , n_3/n_4 и n_3/n_b не зависят от уровня накачки люминесценции *I*. Тот факт, что отношение интенсивностей люминесцентных линий в широких пределах изменения интенсивности накачки остается постоянным, установлен экспериментально.

Таким образом, можно считать доказанным теоретически и экспериментально, что в многодолинных полупроводниках в основное состояние квантовой точки захватывается до шести экситонов, а энергия связи экситонов тем больше, чем меньше диаметр квантовой точки.

Работа выполнена при финансовой поддержке по программе "Интеграция", проект № 326.37.

Список литературы

- [1] С.А. Москаленко. Опт. и спектр., 5, 147 (1958).
- [2] M.A. Lampert. Phys. Rev. Lett., 1, 450 (1958).
- [3] Л.В. Келдыш, Ю.В. Копаев. ФТТ, 6, 2791 (1964).
- [4] Л.В. Келдыш, А.Н. Козлов. ЖЭТФ, 54, 978 (1968).
- [5] A.A. Rogachev. In: *Handbook on Semiconductors*, ed. by P.T. Landsberg (Elsevier/North-Holland publ. Co., Amsterdam, 1992) vol. 1, ch. 9, p. 449.
- [6] M.L.W. Thewalt, V.A. Karasyuk, D.A. Muler. Proc. 23rd Conf. on Phys. Semicond. (Work Scientific, 1996) part I, p. 341.
- [7] A.A. Рогачев. ΦΤΤ, **40**(5), 141 (1998).
- [8] P.J. Dean. In: Progress in Solid State Chemistry (Pergamon Press, N.Y., 1973) vol. 8, p. 1.

Редактор Т.А. Полянская

Exciton molecules captured by quantum dots and isoelectron impurities in manyvalley semiconductors

A.A. Rogachev

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia