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Parabolic negative magnetoresistance in p-Ge / Ge1−xSix heterostructures
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Quantum corrections to the conductivity due to the weak localization (WL) and the disorder-modified electron-
electron interaction (EEI) are investigated for the high-mobility multilayer p-Ge / Ge1−xSex heterostructures at
T = (0.1−20) K in magnetic field B up to 1.5 T. Negative magnetoresistance with logarithmic dependence on
T and linear in B2 is observed for B > 0.1 T. Such a behavior is attributed to the interplay of the classical cyclotron
motion and the EEI effect. The Hartree part of the interaction constant is estimated (Fσ = 0.44) and the WL and
EEI contributions to the total quantum correction ∆σ at B = 0 are separated (∆σWL ≈ 0.3∆σ ; ∆σee ≈ 0.7∆σ).

1. Introduction

The diffusive nature of electron motion in disorderd
conductors results in quantum corrections to the effects with
nontrivial dependences on temperature T and magnetic field
B [1,2]. These corrections are of the order of (kFl)−1, where
kF is the Fermi wave vector and l is the main free path. The
total quantum correction to the Drude conductivity consists
of the single-partical weak localization part and the part due
to the disorder-modified electron–electron (e–e) interaction
between particles with close momenta and energies (in the
diffusion channel) and between particles with small total
momentum (in the Cooper channel). For two-dimensional
(2D) system all three quantum corrections, i. e., localization,
e–e interaction in the diffusion channel and e–e interaction in
the Coopeer channel lead to the logarithmic low-temperature
dependence of the conductivity at B = 0:
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The first term in square brackets of Eq. 1 associated with the
weak localization. The second term is a quantum correction
due to the e–e interactions (EEI) in the diffusion channel.
The third term is the Maki–Thomson correction. The second
term in figure brackets is a quantum corrections due to EEI
in the Cooper channel.

The different quantum corrections may be separated by
application of an external magnetic field as each quantum
effect has its own range of characteristic magnetic fields [3].
In the absence of spin scattering the magnetoresistance
associated with the weak localization is negative. For this
effect there exist two characteristic fields: the field Bϕ of
crossover from parabolic to logarithmic B-dependence of
magnetoresistivity (Bϕ = ~c/4eL2

ϕ , Lϕ — being the inelastic
scattering length) and the field Btr = ~c/2el2, where the
magnetic length become less than the elastic scattering
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length. For the effect in Cooper channel the characteristic
field Bint is the field, where the magnetic length become less
than the coherence length LT .

The localization effect is totally suppressed for field
B � Btr = ~c/2el2 where the magnetic length becomes
less than the elastic mean free path l [4]. In this range,
the only quantum correction to the conductivity is from EEI
in the diffusion channel. In contrast to the B sensitivity of
WL effect the calculation for the EEI in the absence of spin
effects [5–7] demonstrates that

∆σxx ≡ ∆σee − (e2/2π2~)g ln(kTτ/~), ∆σxy = 0, (2)

irrespective of the strength of the applied magnetic field.
Here τ is the elastic relaxation time and the interaction
constant g = (1−Fσ), where the first universal term is due
to the exchange (Fock) part and the second (Fσ) is related
to the direct (Hartree) part of the Coulomb repulsion.

By inverting the conductivity tensor [8] in the presence of
EEI corrections we have for the magnetoresistivity,

ρee
xx(B) = 1/σ0 + [1− (ωcτ )2]∆σee/σ2

0 , (3)

where σ0 is the Drude conductivity and ωc is the cyct-
lotron frequency. The consequence of Eq. (3) is twofold:
irrespective of temperature ρxx(B) = 1/σ0 for ωcτ = 1
and the interplay of the classical cyclotron motion and the
EEI effect in the diffusion channel leads to the parabolic
negative magnetoresistance with logarithmic temperature
dependence:

ρee
xx(B)− ρee(0) = −(ωcτ )2∆σee/σ2

0 ≈ −B2 ln T.

2. Experimental result and discussion

We have investigated the conductivity and
magnetoresistance of strained multilayer pGe / Ge1−xSix
(x = 0.03) heterostructures with the hole densities
p = (2.4 ÷ 2.6) · 1011 cm−2 and mobilities
µ = (1.0−1.7) · 104 cm2/(V · s), (kF l > 10), on Ge
layers at T > 0.1 K in magnetic fields up to 1.5 T. The
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conductivity at B = 0 varies as the logarithm of T in a
wide temperature range (0.1 ÷ 20.0) K (Fig. 1). For B
perpendicular to Ge layers the negative magnetoresistance
is observed in a whole range of magnetic fields up to
ωcτ = 1 (Fig. 2). Due to a high mobility of holes only a
small magnetic field Btr = 0.03 T is needed to suppress the
effect of weak localization. The logarithmic dependence of
∆σ on T at B� Btr (Fig. 3) unambiguously is the evidence
of the EEI quantum corrections. Fig. 4 demonstrates that

Figure 1. The temperature dependence of the conductivity at
B = 0.

Figure 2. The resistivity ρxx as a function magnetic field at T, K:
1 — 0.3, 2 — 0.5, 3 — 2.2, 4 — 4.2, 5 — 12.2.

Figure 3. Plot of the quantum correction to the conductivity
∆σvsln T for different magnetic fields.

Figure 4. The resistivity ρxx against B2 from B = 0 to B = 0.9 T
for T, K: 1 — 0.3, 2 — 1.4, 3 — 2.2. The solid lines is the
extrapolation of the B2 dependence to zero field. The inset show
one of curves (for T = 0.3 K) at higher magnetic fields (ωcτ > 1).

at B > 3Btr the magnetoresistance is really parabolic. The
intersection point of curves for different T at ωcτ ∼= 1 is
also really observed (see Fig. 2).

The extrapolation of B2 dependencies to B = 0 according
to Eq. (2) gives the values of ρee(0) = 1/σ0 +∆σee/σ2

0 for
each T . From the universal value of ρxx at ωcτ = 1 we have
the Drude conductivity σ0 = 12.4e2/h. Then in accordance
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with Eq. (2) the Hartree interaction constant Fσ = 0.44
has been estimated. Due to the transparent parabolic ρxx(B)
dependence in a wide range of magnetic fields where the
EEI contribution is dominant, the separation of WL and EEI
parts of the total quantum correction ∆σ at B = 0 becomes
possible. The result for our structures is that ∆σee ≈ 0.7∆σ
and ∆σWL ≈ 0.3∆σ .

3. Conclusion

We have observed a large negative magnetoresistance
of a high-mobility 2D-hole gas in p-Ge1−xSix/ Ge / Ge1−xSix
quantum wells. We find that a negative magnetoresistance
is proportional to B2 and has a logarithmic temperature
dependence. We attribute this behavior to the interplay
of the classical cyclotron motion and the EEI corrections
to the conductivity in the diffusion channel (exchange and
Hartree contributions). Our sample parameters indicate that
the weak localization and the EEI in the Cooper channel
effects are totally suppressed in this field and temperature
regime (Bϕ < 3 · 10−4 T, Bint < 0.03 T and T < 2.2 K) but
the Zeeman splitting is not get effective Bs > 1 T above 2 K.
We find good agreement between theory and experiment on
the value of the Hartree interaction constant.
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