Транспортные и оптические свойства δ -легированных оловом GaAs-структур

© В.А. Кульбачинский, В.Г. Кытин, Р.А. Лунин, В.Г. Мокеров, А.П. Сеничкин, А.С. Бугаев, А.Л. Карузский, А.В. Пересторонин, R.T.F. van Schaijk*, A. de Visser*

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия *Институт ван дер Ваальса, Университет Амстердама, Нидерланды

(Получена 10 ноября 1998 г. Принята к печати 1 декабря 1998 г.)

Исследованы транспортные и оптические свойства δ-слоев олова в GaAs в зависимости от концентрации Sn. Эффект Шубникова–де-Гааза и эффект Холла измерены в диапазоне температур 0.4 ÷ 12 K в магнитных полях до 38 Tл. Рассчитаны зонные диаграммы и квантовые подвижности электронов в подзонах размерного квантования. В спектрах фотолюминесценции структур обнаружены особенности, связанные с электронными переходами с уровней размерного квантования. Наблюдены осцилляции сопротивления в параллельном к δ-слою магнитном поле, которые объясняются особенностями в плотности состояний на уровне Ферми.

1. Введение

Одним из эффективных методов получения высокой концентрации двумерных электронов в полупроводниковых структурах является метод б-легирования, при котором примесь сконцентрирована в очень узком слое, в идеале составляющем лишь один слой атомов. Обычно для б-легирования используется кремний. Олово до настоящего времени мало использовалось для δ-легирования GaAs из-за его высокой сегрегационной способности [1], хотя оно, как донорная примесь, менее амфотерно по сравнению с традиционно используемым для создания *б*-слоев *n*-типа кремнием. Использование Sn дает возможность получения большей концентрации двумерных электронов в б-слое. В настоящей работе исследованы транспортные и оптические свойства δ-слоев олова на сингулярной поверхности в структурах GaAs–GaAs (δ -Sn) — в зависимости от концентрации олова. Изучение результатов б-легирования оловом сингулярных поверхностей важно для сравнения с данными по б-легированию оловом вицинальных (или высокоиндексных) граней арсенида галлия, перспективных для получения одномерных электронных каналов [2,3].

2. Образцы и методика измерений

В работе исследовались δ -легированные оловом GaAs-структуры, выращенные методом молекулярнолучевой эпитаксии. На полуизолирующей GaAs(Cr)-подложке (001) выращивался буферный слой *i*-GaAs (240 нм), затем при температуре $T_S \approx 450^{\circ}$ С и повышенном потоке As на поверхности осаждался δ -слой олова, который заращивался слоем *i*-GaAs толщиной 40 нм и контактным слоем GaAs:Si (с концентрацией кремния $1.5 \cdot 10^{18}$ см⁻³) толщиной 20 нм. Уровень легирования оловом изменялся от $N_D = 2.97 \cdot 10^{12}$ см⁻² в образце 1 до $N_D = 2.67 \cdot 10^{14}$ см⁻² в образце 6. Некоторые параметры образцов приведены в табл. 1. Измерения проводились как на образцах в виде двойного холловского моста, так и на квадратных.

Температурные зависимости сопротивления измерялись в диапазоне температур 0.4 < T < 300 К. Эффект Холла и магнитосопротивление исследовались при температурах 0.4 < T < 12 К в стационарных магнитных полях до 10 Тл и импульсных — до 38 Тл. Для измерений в магнитных полях до 38 Тл использовалась установка импульсных магнитных полей Амстердамского университета. Измерения спектров низкотемпературной фотолюминесценции проводились при температуре 4.2 К с использованием спектрометра МДР-3, фотоэлектронного умножителя, работающего в режиме счета фотонов, при оптическом возбуждении излучением аргонового лазера (длина волны 514.5 нм, мощность излучения 7 мВт, диаметр пятна 1 мм).

Проводимость и магнитосопротивление исследованных структур

Сопротивление образца 1 с относительно небольшой концентрацией электронов растет при понижении температуры от комнатной до гелиевой (рис. 1). Сопротивление сильно легированных образцов (4–6) при понижении

Таблица 1. Концентрация олова N_D , сумма концентраций электронов n_{SdH} во всех подзонах, определенная по эффекту Шубникова–де-Гааза, и холловская концентрация n_H для различных образцов при температуре T = 4.2 К

№ образца	$N_D, 10^{12} \mathrm{cm}^{-2}$	$\sum n_{SdH}, 10^{12} \mathrm{cm}^{-2}$	$n_H, 10^{12} \mathrm{cm}^{-2}$
1	2.97	2.75	1.74
2	8.91	8.73	3.59
3	26.7	7.30	2.63
4	29.7	7.80	10.4
5	89.1	8.09	8.35
6	267	45.3	83.5

температуры уменьшается до некоторой температуры (которая тем ниже, чем сильнее легирован образец) и затем растет. Как видно из рис. 1, величина сопротивления падает при увеличении концентрации примеси.

Измерения эффекта Холла показали, что во всех образцах коэффициент Холла постоянен в исследованном диапазоне магнитных полей и не зависит от темпера-

Рис. 1. Зависимости сопротивления ρ (на квадрат) от температуры в образцах 1, 3, 5, 6 (см. табл. 1).

Рис. 2. Зависимости изменения сопротивления $\Delta R = R(B) - R(0)$ от магнитного поля *B* при температуре T = 4.2 К для образцов 2 (*a*) и 6 (*b*).

Рис. 3. Фурье-спектры от осцилляций магнитосопротивления в обратном магнитном поле для образцов 2, 4, 5 (a) и 6 (b). Стрелки на рис. *b* показывают концентрации, соответствующие рассчитанным энергиям подзон размерного квантования.

туры в области температур 0.4 < T < 12 К. Полученные значения холловской концентрации n_H электронов изменяются от $1.74 \cdot 10^{12}$ см⁻² в образце 1 до $8.35 \cdot 10^{13}$ см⁻² в образце 6 (см. табл. 1), а холловская подвижность равна $1080 \div 1940$ см²/(В · с) в различных образцах при гелиевой температуре.

В магнитных полях B < 0.2 Тл при низких температурах во всех образцах наблюдалось отрицательное магнитосопротивление, квадратичное в слабых магнитных полях и логарифмически зависящее от величины магнитного поля в сильных полях. Абсолютная величина отрицательного магнитосопротивления убывала с увеличением концентрации олова в δ-слое. В сильных магнитных полях при низких температурах в исследованных структурах наблюдался эффект Шубникова-де-Гааза. На рис. 2 в качестве примера показаны осцилляции поперечного магнитосопротивления образцов 2 и 6, а на рис. 3 — фурье-преобразование от осцилляций $\Delta R(H)$ в обратном магнитном поле для образцов 2, 4-6. Измерение зависимости частот осцилляций от угла наклона магнитного поля показало, что осцилляции наблюдаются от двумерных носителей тока.

Физика и техника полупроводников, 1999, том 33, вып. 7

№ образца	<i>і</i> номер подзоны	$n_{SdH}, 10^{12} \mathrm{cm}^{-2}$	$N_S, 10^{12} \mathrm{cm}^{-2}$	$\mu_q^{\it SdH},$ см $^2/({ m B}\cdot{ m c})$	$\mu_q^t, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	<i>В</i> ∥, Тл	B_{\parallel}^{t} , Тл
	0	1.76	1.75	1340	790	-	_
1	1	0.99	0.99	1450	900	18.6	20.5
	2	—	0.28	—	1120	4	7.4
	0	3.91	3.97	570	570	_	_
5	1	2.12	2.42	1100	740	33.4	41.7
	2	1.49	1.12	1630	1470	18.4	18.1
	3	0.57	0.33	2060	1830	5.6	6.3
	0	_	11.06	_	217	_	_
	1	_	10.80	_	217	_	_
	2	_	10.38	_	218	_	_
	3	9.75	9.75	1370	220	_	_
	4	8.84	8.87	1590	225	_	43.9
6	5	8.04	7.84	1910	236	36.3	34.1
	6	6.54	6.68	1330	258	29.6	28.7
	7	5.39	5.36	_	295	24.7	23.3
	8	3.76	3.91	—	359	19.7	17.8
	9	2.95	2.49	—	461	13.0	12.5
	10	—	1.32	—	509	7.6	8.0

Таблица 2. Концентрации n_{SdH} и квантовые подвижности μ_q^{SdH} электронов в различных подзонах, определенные из эффекта Шубникова–де-Гааза при температуре 4.2 К; концентрации N_S , полученные из самосогласованного расчета; квантовые подвижности μ_q^t электронов, рассчитанные для рассеяния на ионизованных примесях с учетом межподзонного рассеяния; экспериментальные (B_{\parallel}) и вычисленные (B'_{\parallel}) значения параллельного магнитного поля, при котором происходит опустошение подзон

Двумерные концентрации электронов в подзонах размерного квантования, определенные из максимумов фурье-спектров, приведены в табл. 2. Из табл. 1 видно, что концентрация свободных электронов $\sum n_{SdH}$ в образцах 1 и 2 примерно равна концентрации введенного олова N_D. При увеличении концентрации вводимого олова концентрация свободных электронов существенно не меняется (образцы с 3 по 5 в табл. 1). Положения максимумов фурье-спектров на рис. 3, а примерно одинаковы для образцов 2, 4 и 5, хотя амплитуды пиков отличаются из-за различного распределения подвижностей электронов по подзонам в этих образцах. Сумма двумерных концентраций в четырех подзонах размерного квантования в образцах 2-5 равна примерно $8 \cdot 10^{12} \, \mathrm{cm}^{-2}$, что сравнимо с предельной концентрацией электронов для δ-легированных кремнием GaAs-структур [4-6]. Однако при дальнейшем увеличении концентрации вводимого олова концентрация свободных электронов значительно увеличивается (образец 6). Насыщение концентрации свободных носителей в GaAs (δ-Si)-структурах обычно объясняется заполнением DX-центров [5,7] или увеличением числа компенсирующих дефектов [8,9] при возрастании концентрации легирующей примеси. Можно предположить, что энергия *DX*-уровня по отношению к краю зоны проводимости в точке Г возрастает при столь высоких, как в образце 6, уровнях легирования [10,11], а различные дефекты неточно компенсируют донорные атомы олова.

При определении подвижностей электронов в подзонах размерного квантования необходимо различать транспортные и квантовые времена релаксации [12–14]. Транспортное время релаксации импульса электрона τ_t определяется средним временем между упругими актами рассеяния на примесях, существенно изменяющих направление импульса, и может быть записано в виде

$$\frac{1}{\tau_t} = \int_0^\pi \sigma(\varphi)(1 - \cos\varphi)d\varphi, \qquad (1)$$

где $\sigma(\varphi)$ пропорционально вероятности рассеяния в единицу времени на угол φ в плоскости δ -слоя. Квантовое время жизни (одночастичное время релаксации) получается при усреднении времени между любыми событиями рассеяния и дается выражением

$$\frac{1}{\tau_q} = \int_0^\pi \sigma(\varphi) d\varphi.$$
 (2)

Из-за множителя $(1 - \cos \varphi)$ в выражении для τ_t транспортное время рассеяния может отличаться от квантового. Для изотропного рассеяния, например на фононах, эти времена рассеяния равны. Однако для кулоновского рассеяния на ионизованных примесях сечение $\sigma(\varphi)$ велико при рассеянии на небольшие углы, поэтому τ_t может быть в несколько раз больше τ_q .

Анализ зависимости амплитуды осцилляций Шубникова-де-Гааза от магнитного поля дает возможность определить квантовые подвижности электронов $\mu_q = \frac{e}{m^*} \tau_q$ в каждой из подзон размерного квантования [13]. Для этого соответствующие частоты в осцилляциях Шубникова–де-Гааза выделяются с помощью цифрового фильтра [15] и строится график Дингла [16]. Полученные квантовые подвижности возрастают во всех образцах от примерно 600 см²/(B · c) в нижних подзонах размерного квантования до 2100 см²/(B · c) в верхних подзонах (см. табл. 2). Эти значения согласуются с величинами подвижностей, полученных для δ -легированных кремнием GaAs-структур [17,18].

Энергетический спектр и фотолюминесценция GaAs (δ-Sn)-структур

Зонные диаграммы, волновые функции и концентрации электронов в подзонах размерного квантования рассчитаны методом самосогласованного решения уравнений Шредингера и Пуассона аналогично расчетам, проведенным в работе [17]. Непараболичность зоны проводимости в точке Г учитывалась подстановкой среднего квадрата волнового вектора $\langle k_z^2 \rangle_i = \int\limits_{-\infty}^{\infty} \psi_i \left(- \frac{d^2}{dz^2} \right) \psi_i dz$ в закон дисперсии согласно работе [19], что позволяет вычислить плотность состояний в *i*-й подзоне. Толщина *б*-слоя ионизированных примесей олова, использовавшаяся в расчетах в качестве подгоночного параметра [20], получилась приблизительно равной 16 нм для образцов 1-5. Такая толщина δ -слоя хотя и выше, чем в δ -легированных кремнием структурах [4,7,21], но является небольшой для олова [1]. Рассчитанные двумерные концентрации электронов в подзонах размерного квантования приведены в табл. 2. На рис. 4, а показана зонная диаграмма, вычисленная для образца 5. В расчетах учитывалось, что уровень Ферми пиннингуется на свободной поверхности образца на 0.74 эВ ниже дна зоны проводимости [22] и в полуизолирующей подложке — на уровне хрома (0.75 эВ ниже зоны проводимости [23]).

В образце 6 с самой высокой концентрацией олова $N_D = 2.67 \cdot 10^{14} \,\mathrm{cm}^{-2}$ и холловской концентрацией $n_H = 8.35 \cdot 10^{13} \,\mathrm{cm}^{-2}$, при низких температурах, электронами должна быть заполнена также и зона проводимости в точке L (согласно работе [5], в случае идеально узкого δ -слоя это происходит при концентрации ионизированной примеси свыше $N_D = 1.6 \cdot 10^{13} \,\mathrm{cm}^{-2}$ и концентрации электронов в нижней подзоне более $9.3 \cdot 10^{12} \,\mathrm{cm}^{-2}$). В случае нескольких заполненных подзон холловская концентрация усредняется по всем подзонам:

$$n_H = \frac{\left(\sum_i n_i \mu_{ti}\right)^2}{\sum_i n_i \mu_{ti}^2},\tag{3}$$

где n_i — концентрация, а μ_{ti} — транспортная подвижность электронов в *i*-й подзоне. В результате величина n_H меньше суммарной концентрации электронов во всех подзонах, определяемой из эффекта

Рис. 4. Зонные диаграммы для образцов 5 (*a*) и 6 (*b*). Энергия отсчитывается от уровня Ферми (штрихпунктирная линия). Свободная поверхность образцов расположена при z = 60 нм. Для образца 5 показаны также квадраты волновых функций электронов в подзонах. Уровни энергии в зоне *L* в образце 6 показаны штриховыми линиями.

Шубникова-де-Гааза, поэтому чтобы достичь такой высокой величины *n_H*, в образце 6 должны существовать по крайней мере три подзоны с концентрацией, большей 10^{13} см⁻², которые слабо проявляют себя в исследованном диапазоне магнитных полей (см. рис. 3, b). Электроны в точке L не должны вносить существенный вклад в значение n_H из-за их низкой подвижности. В самосогласованном расчете использовались следующие параметры эффективных масс электронов в точке L для плоскости (001) [5]: для движения в направлении квантования $m_7 = 0.11 m_0$, а для движения в плоскости слоя $(xy) m_x = 0.075 m_0, m_y = 1.29 m_0$, при этом эффективная масса плотности состояний $m_{ds} = (m_x m_y)^{1/2} = 0.38 m_0$ и имеется четыре эквивалентных эллипсоида постоянной энергии (степень вырождения $g_v = 4$). Энергии подзон размерного квантования в точке L рассчитывались в потенциале, смещенном по энергии на $E_{L-\Gamma} = 290 \,\text{мэB}$ выше точки Г. Точкой Х в расчетах пренебрегалось, так как $E_{X-\Gamma} = 460$ мэВ. Кривая потенциалов в точках Г и L получалась решением уравнения Пуассона

Рис. 5. Спектры фотолюминесценции для образцов 3, 5 и 6 и контрольного образца GaAs без δ -слоя при T = 4.2 К. Положения максимумов объясняются в тексте.

для полного распределения заряда, состоящего как из заполненных электронных состояний в точках Г и L, так и фиксированного положительного заряда ионизованных доноров олова. Рассчитанная зонная диаграмма для образца 6 приведена на рис. 4, b. Получающиеся при толщине δ-слоя ионизованных примесей, равной 34 нм, концентрации электронов в точке Г примерно равны наблюдающимся концентрациям в фурье-спектре (рис. 3, b; табл. 2). Концентрации в трех нижних подзонах очень близки друг к другу, и поэтому соответствующие пики сливаются в один широкий пик около $1.1 \cdot 10^{13} \, \mathrm{cm}^{-2}$ на рис. 3, b и отчетливо не видны в фурье-спектре. Рассчитанные концентрации электронов в трех подзонах в точке L равны $2.0 \cdot 10^{13}$, $1.54 \cdot 10^{13}$ и $7.8 \cdot 10^{12}$ см⁻². Суммарная концентрация свободных электронов в этом образце по крайней мере в 4 раза превышает предельно достижимую концентрацию для б-легированных кремнием GaAs-структур [6] при небольшой для олова толщине δ-слоя [1].

Метод низкотемпературной фотолюминесценции является важной экспериментальной техникой для исследования двумерных электронных систем. Однако исследование фотолюминесценции δ -легированных структур осложнено тем, что потенциал, удерживающий электроны в подзонах размерного квантования, является отталкивающим для дырок. Это отталкивание может снижать перекрытие между электронными и дырочными волновыми функциями и, следовательно, уменьшать интенсивность фотолюминесценции [24,25].

На рис. 5 представлен спектр испускания фотолюминесценции для образцов 3, 5 и 6, а также контрольного образца без δ -слоя. Контрольный образец получен путем стравливания верхних слоев образца 1, содержащих δ -слой, на глубину 100 нм. В спектрах низкотемпературной фотолюминесценции образца GaAs без δ -слоя присутствуют характерные линии с энергией 1.514 эВ, соответствующей рекомбинации связанных на нейтральном доноре экситонов; линия с энергией 1.492 эВ, соответствующей излучательному переходу электрона на акцепторный уровень углерода, и ее *LO*-фононное повторение с энергией 1.456 эВ; а также линия с энергией 1.442 эВ (дефект Ga на подрешетке As) [26,27]. Спектральная особенность при энергии 1.478 эВ обусловлена рекомбинацией связанного экситона с участием *LO*-фонона, а также рекомбинацией на дефектах, возникающих в процессе роста при молекулярно-лучевой эпитаксии.

Для структур с б-слоями различной концентрации вид спектров фотолюминесценции изменяется с ростом концентрации легирования б-слоя. Появляется широкая полоса с максимумом 1.35 эВ (см. рис. 5), обусловленная излучательным переходом на акцепторный уровень Sn, локализованный в области б-слоя. Интенсивность этой полосы растет с увеличением концентрации олова. Кроме того, наблюдается изменение отношения интенсивностей описанных выше линий, характерных для образца без δ -слоя, а также появление новых спектральных особенностей, которые можно объяснить рекомбинацией электронов с уровней размерного квантования в δ -слое и фотогенерированных дырок, локализованных вблизи поверхности образца [24]. Особенно наглядно обусловленные уровнями размерного квантования особенности наблюдаются для образца 5 (рис. 6, пики с энергией 1.521 и 1.502 эВ). Эти особенности скорее всего связаны с

Рис. 6. Выделенные части спектров фотолюминесценции контрольного образца без δ -слоя (1) и образца 5 (2) при T = 4.2 К. Интенсивности фотолюминесценции такие же, как на рис. 5.

электронными переходами с верхних уровней размерного квантования, так как волновые функции верхних подзон простираются дальше от центра δ -слоя и их перекрытие с дырочными волновыми функциями больше, чем для нижних подзон. Полученная в самосогласованном расчете разность энергий верхних подзон с номерами i = 2 и i = 3 равна 25 мэВ для этого образца, что примерно совпадает с разностью новых линий фотолюминесценции. Отметим также, что в линию 1.502 эВ наряду с вышеуказанным каналом рекомбинации может давать вклад рекомбинация электронов с верхнего электронного уровня i = 3 и дырок, локализованных на акцепторе углерода.

Используя волновые функции, найденные в самосогласованном расчете, были рассчитаны низкотемпературные квантовые подвижности электронов при многоподзонном рассеянии на ионизованных примесях [28-30], которые приведены в табл. 2. Экранирование рассеивающего кулоновского потенциала учитывалось в приближении хаотических фаз [28]. Из численных расчетов видно (см. табл. 2), что подвижности электронов возрастают с увеличением номера подзоны і, так как в верхних подзонах больше среднее расстояние от электронов до примесей. Вычисленные квантовые подвижности в образцах 1-5 получились несколько меньше, чем определенные из эффекта Шубникова-де-Гааза (см. табл. 2), что может быть связано с частичной корреляцией в распределении ионизованных примесей [31,32]. В образце 6 квантовые подвижности электронов, определенные из эффекта Шубникова-де-Гааза, более чем в 6 раз выше вычисленных квантовых подвижностей, что может объясняться сильным экранированием ионизованных примесей электронами L-зоны, имеющими большую эффективную массу (это экранирование не учитывалось в расчетах), а также более сильной, чем в образцах 1-5, корреляцией примесей.

5. Осцилляции сопротивления в параллельном к δ-слою магнитном поле

Измерение эффекта Шубникова-де-Гааза является основным методом определения концентраций электронов в подзонах размерного квантования двумерных систем. Однако в δ -легированных структурах высшие подзоны имеют низкие концентрации электронов, осцилляции от которых трудно увидеть при исследовании эффекта Шубникова-де-Гааза. Диамагнитный эффект Шубникова-де-Гааза, при котором магнитное поле направлено в плоскости δ -слоя, позволяет, однако, точно определить число заполненных подзон [33] и является полезным средством при исследовании многоподзонных двумерных систем. На рис. 7 в качестве примера приведены осцилляции сопротивления образца 1 в параллельном поверхности магнитном поле для тока, параллельного и перпендикулярного магнитному полю.

Если магнитное поле B направлено по оси y и векторный потенциал равен $\mathbf{A} = (Bz, 0, 0)$, то уравнение Шредингера имеет вид [34]

$$\left[\frac{p_{y}^{2}}{2m^{*}} + \frac{1}{2m^{*}}(p_{x} + ezB)^{2} - \frac{\hbar^{2}}{2m^{*}}\frac{\partial^{2}}{\partial z^{2}} + \Phi(z)\right]\Psi = E\Psi, \quad (4)$$

где потенциал $\Phi(z)$ является суммой электростатического потенциала U_H , определяемого из уравнения Пуассона

$$\frac{d^2 U_H(z)}{dz^2} = -\frac{e^2}{\varepsilon_0 \varepsilon} \left[\sum n_i \psi_i^2(z) - N(z) \right], \qquad (5)$$

где $\varepsilon = 13.18$ — диэлектрическая проницаемость GaAs, N(z) — объемная концентрация ионизированных доноров, $n_i = \frac{m^*}{\pi \hbar^2} (E_F - E_i)$ — двумерная концентрация электронов в *i*-й подзоне; а также обменно-корреляци-

Рис. 7. Сопротивление образца 1 в параллельном к δ -слою магнитном поле для двух ориентаций тока через образец относительно магнитного поля.

Физика и техника полупроводников, 1999, том 33, вып. 7

онного потенциала U_{xc} [35]

$$U_{xc} = -\left[1 + 0.0545r_{S}\ln\left(1 + \frac{11.4}{r_{S}}\right)\right]\frac{2}{\pi\alpha r_{S}}Ry^{*},\quad(6)$$

где

$$\alpha = \left(\frac{4}{9\pi}\right)^{1/3}, \quad r_S = \left(\frac{4\pi a_B^3 n(z)}{3}\right)^{-1/3},$$
$$a_B^* = \frac{4\pi\varepsilon_0\varepsilon\hbar^2}{m^*e^2}, \quad Ry^* = \frac{e^2}{8\pi\varepsilon_0\varepsilon a_B^*},$$

n(z) — объемная концентрация электронов. Самосогласованное решение можно записать в форме

$$E = E_i(k_x) + \frac{\hbar^2}{2m^*}k_y^2.$$
 (7)

Расчеты проводились для параболического случая, и эффективная масса электронов во всех подзонах принималась равной $m^* = 0.07m_0$. На рис. 8 приведены зависимости $E_i(k_x)$ при B = 0 и B = 18 Тл для образца 2. Видно, что подзоны i = 4 и i = 3 выталкиваются в таком магнитном поле выше уровня Ферми и опустошаются, причем электроны перераспределяются между оставшимися тремя подзонами в изменившемся самосогласованном потенциале $\Phi(z)$. При увеличении магнитного поля подзоны сдвигаются к уровню Ферми и полная плотность состояний на уровне Ферми g(B) возрастает, а затем резко падает при прохождении энергии очередной подзоны через уровень Ферми. Возрастание плотности состояний и опустошение подзон приводит к осцилляциям магнитосопротивления (рис. 9). Вычисленные значения магнитного поля B_{\parallel}^{t} , при которых происходит опустошение соответствующих подзон размерного квантования, и экспериментальные значения *B*_{||}, определенные по минимумам первой производной магнитосопротивления [34], хорошо совпадают между собой (см. табл. 2). Небольшая разница между вычисленными и экспериментально определенными значениями

Рис. 8. Энергетические подзоны размерного квантования в образце 2 в отсутствие магнитного поля (штриховые линии) и в поле B = 18 Тл (сплошные линии).

Физика и техника полупроводников, 1999, том 33, вып. 7

Рис. 9. Зависимости сопротивления образца 2 от величины параллельного δ -слою магнитного поля для двух ориентаций тока через образец относительно магнитного поля и отношение рассчитанной плотности состояний на уровне Ферми g(B) к плотности состояний и отсутствие магнитного поля g(0).

 B_{\parallel} может быть связана с тем, что при пересечении подзон с уровнем Ферми изменяется не только плотность состояний, но и подвижности электронов из-за межподзонного рассеяния [36]. Положения максимумов сопротивления слабо зависят от направления тока через образец по отношению к параллельному магнитному полю (рис. 7, 9), как и для толстых δ -слоев кремния [34].

В образце 6 энергетическое положение подзон в значительной степени определяется непараболичностью зоны проводимости в точке Г: согласно расчетам, эффективная масса электронов возрастает от величины 0.083 m_0 в нижней подзоне до 0.1 m_0 в верхней. Чтобы оценить значения параллельного магнитного поля B_{\parallel} , при котором происходит опустошение подзон в этом образце, можно воспользоваться теорией возмущения. Опустошение подзоны происходит, когда диамагнитный сдвиг энергии $\frac{e^2 B_{\perp}^2}{2m^*} \langle z_i^2 \rangle$ равен энергии дна подзон $E_i = \frac{\pi \hbar^2}{m^*} n_i$, откуда получаем

$$B_{\parallel} = \sqrt{\frac{2\pi\hbar^2 n_i}{e^2 \langle z_i^2 \rangle}}.$$
(8)

Формула (8) не содержит эффективной массы и довольно хорошо совпадает с результатами точного расчета [37]. Полученные таким образом для образца 6 значения магнитного поля B_{\parallel} хорошо согласуются с экспериментально определенными (см. табл. 2), что свидетельствует о правильности описания верхних подзон в этом образце.

6. Заключение

В работе исследованы транспортные и оптические свойства структур GaAs (δ -Sn) в зависимости от концентрации олова. Рассчитанные квантовые подвижности электронов в подзонах размерного квантования неплохо согласуются с соответствующими величинами, определенными из эффекта Шубникова–де-Гааза. Полученная максимальная двумерная концентрация свободных электронов превышает предельные значения для δ -легированных кремнием GaAs-структур при относительно небольшой толщине δ -слоя олова. При таких высоких концентрациях электронами заполнена зона проводимости в точке *L*. Рассчитанные значения величин параллельного магнитного поля, при которых происходит опустошение подзон, хорошо совпадают с экспериментально определенными значениями.

Авторы благодарят Dr. P.M. Коепгааd за полезное обсуждение результатов работы.

Работа выполнена при поддержке РФФИ (гранты №№ 97-02-17396, 96-02-18593а, 98-02-17452) и "Dutch organizations N.W.O. and F.O.M."

Список литературы

- J.J. Harris, D.E. Ashenford, C.T. Foxon, P.J. Dobson, B.A. Joyce. Appl. Phys. A, 33, 87 (1984).
- [2] А. де Виссер, В.И. Кадушкин, В.А. Кульбачинский, В.Г. Кытин, А.П. Сеничкин, Е.Л. Шангина. Письма ЖЭТФ, **59**, 340 (1994) [JETP Lett., **59**, 363 (1994)].
- [3] V.A. Kulbachinskii, R.A. Lunin, E.V. Bogdanov, V.G. Kytin, A.P. Senichkin. Physica B, 229, 262 (1997).
- [4] A. Zrenner, F. Koch, K. Ploog. Surf. Sci., 196, 671 (1988).
- [5] A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog, G. Weimann. Semicond. Sci. Technol., 3, 1203 (1988).
- [6] J.V. Thordson, T.G. Andersson, G. Swenson, U. Rodervall. J. Cryst. Growth, 175/176, 234 (1997).
- [7] S.P. Wilks, A.E. Cornish, M. Elliot et al. J. Appl. Phys., 76, 3583 (1994).
- [8] R.C. Newman, M.J. Ashwin, M.R. Fahy et al. Phys. Rev. B, 54, 8769 (1996).
- [9] C. Domke, Ph. Ebert, M. Heinrich, K. Urban. Phys. Rev. B, 54, 10288 (1996).
- [10] D.K. Maude, J.C. Portal, L. Dmowski et al. Phys. Rev. Lett., 59, 815 (1987).
- [11] P.M. Mooney. J. Appl. Phys., 67, R1 (1990).
- [12] P.M. Koenraad. In: *Delta Doping of Semiconductors*, ed. by E.F. Schubert (Cambridge University Press, Cambridge, 1996) Ch. 17.
- [13] P.M. Koenraad, A.F.W. van de Stadt, J.M. Shi et al. Physica B, 211, 462 (1995).
- [14] P.T. Coleridge, R. Stoner, R. Fletcher. Phys. Rev. B, 39, 1120 (1989).
- [15] J.F. Kaiser, W.A. Reed. Rev. Sci. Instrum., 49, 1103 (1978).
- [16] P.T. Coleridge. Phys. Rev. B, 44, 3793 (1991).
- [17] В.А. Кульбачинский, Р.А. Лунин, В.Г. Кытин, А.С. Бугаев, А.П. Сеничкин. ЖЭТФ, **110**, 1517 (1996) [JETP **83**, 841 (1996)].
- [18] Р.А. Лунин, В.Г. Кытин, В.А. Кульбачинский, Г.А. Миронова. Вестн. МГУ. Сер. 3, № 4, 31 (1997).
- [19] U. Rössler. Sol. St. Commun., 49, 943 (1984).
- [20] M.H. Degani. Phys. Rev. B, 44, 5580 (1991).
- [21] E.F. Schubert, C.W. Tu, R.F. Kopf et al. Appl. Phys. Lett., 51, 2592 (1989).
- [22] T.M. Hsu, W.-H. Chang, D.H. Liao, W.C. Lee. J. Appl. Phys., 84, 1074 (1998).

- [23] A. Chandra, C.E.C. Wood, D.W. Woodard, L.F. Eastman. Sol. St. Electron., 22, 645 (1979).
- [24] J. Wagner, A. Fischer, K. Ploog. Phys. Rev. B, 42, 7280 (1990).
- [25] J. Wagner, D. Richards. In: *Delta Doping of Semiconductors*, ed. by E.F. Schubert (Cambridge University Press, Cambridge, 1996) Ch. 15.
- [26] M.S. Skolnick, C.W. Tu, T.D. Harris. Phys. Rev. B, 33, 8468 (1986).
- [27] D.J. Ashen, P.J. Dean, D.T.J. Hurle et al. J. Phys. Chem. Sol., 36, 1041 (1975).
- [28] G.-O. Hai, N. Studart, F.M. Peeters. Phys. Rev. B, 52, 8363 (1995).
- [29] L.R. Gonzalez, J. Krupski, T. Szwacka. Phys. Rev. B, 49, 11111 (1994).
- [30] L.C.D. Goncalves, A.B. Henriques. Semicond. Sci. Technol., 12, 203 (1997).
- [31] J.M. Shi, P.M. Koenraad, A.F.W. van de Stadt et. al. Phys. Rev. B, 55, 13 093 (1997).
- [32] R. Shikler, M. Heiblum, V. Umansky. Phys. Rev. B, 55, 15427 (1997).
- [33] H. Reisinger, F. Koch. Surf. Sci., 170, 397 (1986).
- [34] A.F.W. van de Stadt, R. Bogaerts, P.M. Koenraad et al. Physica B, 211, 458 (1995).
- [35] Н. Марч, В. Кон, П.Вашишта, С. Лундквист и др. Теория неоднородного электронного газа (М., Мир, 1987).
- [36] J.M. Heisz, E. Zaremba. Phys. Rev. B, 53, 13 594 (1996).
- [37] A. Zrenner, H. Reisinger, F. Koch, K. Ploog, J.C. Maan. Phys. Rev. B, 33, 5607 (1986).

Редактор Т.А. Полянская

Transport and optical properties of tin delta-doped GaAs structures

V.A. Kulbachinski, V.G. Kytin, R.A. Lunin,

V.G. Mokerov, A.P. Senichkin, A.S. Bugaev,

A.L. Karuzski, A.V. Perestoronin, R.T.F. van Schaijk*, A. de Visser*

M.V. Lomonosov Moskow State University, 119899 Moscow, Russia *Van der Waals Institute, Amsterdam University, the Netherlands