## Создание и свойства гетероструктур In<sub>2</sub>O<sub>3</sub>/CdS/CuInSe<sub>2</sub>

© В.Ю. Рудь, Ю.В. Рудь\*

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия \*Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 21 декабря 1998 г. Принята к печати 23 декабря 1998 г.)

Вакуумным термическим напылением слоев CdS $\langle In \rangle$  на нагретые подложки *p*-CuInSe<sub>2</sub> получены гетероструктуры, на широкозонную компоненту которых методом магнетронного распыления наносился слой In<sub>2</sub>O<sub>3</sub>. Исследована фоточувствительность гетероструктур в естественном и линейно поляризованном излучении. Фоточувствительность лучших структур дотигает 80 мA/Вт при T = 300 K. Обнаружена наведенная поляризационная фоточувствительность гетероструктур и обсуждаются закономерности ее угловых и спектральных зависимостей. Сделаны выводы о возможностях использования полученных гетероструктур в качестве узкоселективных фотоанализаторов линейно поляризованного излучения.

Тройные полупроводники  $A^{I}B^{III}C_{2}^{VI}$  с решеткой халькопирита находят все более широкое распространение в разработках высокоэффективных фотопреобразователей разнообразных типов [1–3]. Барьер CdS/CuInSe<sub>2</sub> уже позволил довести коэффициент полезного действия солнечных элементов до 18% [4]. В данной работе изложены результаты первых исследований поляризационной фоточувствительности (ФЧ) таких гетероструктур (ГС), снабженных антиотражающим покрытием In<sub>2</sub>O<sub>3</sub>.

Для изготовления ГС применялись поликристаллические слитки CuInSe<sub>2</sub>, полученные непосредственным сплавлением исходных элементов чистотой не ниже 99.999 вес %. Синтез осуществлялся в вакуумированных кварцевых ампулах и за счет введения в состав шихты избыточного селена обеспечивал получение электрически однородного вещества с концентрацией свободных дырок около  $2 \cdot 10^{16}$  см<sup>-3</sup> и холловской подвижностью  $25 \text{ см}^2/\text{B} \cdot \text{с}$  при T = 300 К. Параметры элементарной ячейки выращенных кристаллов соответствовали известным для CuInSe<sub>2</sub> [4].

Полученные плотные слитки CuInSe<sub>2</sub> (длина до 10 см, диаметр до 12 мм) разрезались на шайбы, поверхность которых полировалась механически, а затем химически, тщательно промывалась и просушивалась. Слои сульфида кадмия осаждались вакуумным термическим распылением порошкообразного вещества, представляющего собой смесь CdS и InS, взятых в соотвествующем соотношении. Осаждение слоев проводилось на нагретые (400-450°С) подложки CuInSe<sub>2</sub>. Это обеспечивает получение слоев CdS с концентрацией свободных электронов от 10<sup>18</sup> до 10<sup>19</sup> см<sup>-3</sup> при толщинах 3-4 мкм. Достигнутый уровень легирования слоев связан с растворением индия в CdS. Методом магнетронного распыления мишени из чистого индия в кислородсодержащей атмосфере на поверхность CdS осаждались слои In<sub>2</sub>O<sub>3</sub> с толщинами около 1 мкм. Затем на поверхность In<sub>2</sub>O<sub>3</sub> вакуумным напылением наносилась токосъемная гребенка из Ац, а на тыльную поверхность шайб наносился сплошной слой Аи толщиной до 2 мкм. Активная площадь полученных ГС достигала 1–1.2 см<sup>2</sup>.

На рис. 1 приведена типичная стационарная вольтамперная характеристика одной из полученных ГС, пропускное направление всегда отвечало положительной полярности внешнего смещения на p-CuInSe<sub>2</sub>. Прямая ветвь вольт-амперных характеристик при U > 1 В следует соотношению

$$I = (U - U_0)/R_0,$$
 (1)

где  $R_0$  — остаточное сопротивление, а  $U_0$  — напряжение отсечки. Для исследованных ГС  $R_0 = 200-500$  Ом, а  $U_0 = 0.8$  В при T = 300 К. Обратный ток таких ГС растет пропорциоанально напряжению до 1 В, а при U > 1 В наступает мягкий пробой.

При освещении ГС со стороны  $In_2O_3$  возникает фотовольтаический эффект, причем положительная полярность фотонапряжения отвечает *p*-CuInSe<sub>2</sub>, что находится в соответствии с направлением выпрямления. Для лучших ГС вольтовая фоточувствительность достигает 10 В/Вт, а токовая — 80 мА/Вт при T = 300 К.

На рис. 2 представлены типичные спектральные зависимости относительной квантовой эффективности фотопреобразования  $\eta$  для некоторых ГС в естественном излучении при T = 300 К. Длинноволновый край ФЧ для всех ГС экспоненциальный и ему отвечает высокая крутизна  $s = \partial (\ln \eta) / \partial (\hbar \omega)$ , которая в полученных ГС изменяется в диапазоне  $60-120 \ \mathrm{yB}^{-1}$ , что соответствует характеру межзонных переходов в CuInSe<sub>2</sub> [5]. Энергетическое положение длинноволнового края фоточувствительности  $\eta$  для исследованных структур лежит в окрестности ширины запрещенной зоны  $E_G$  CuInSe<sub>2</sub> и может быть сопоставлено прямым межзонным переходам в этом полупроводнике [6]. Однако спектральный контур коротковолнового спада  $\Phi \Psi$  ( $\hbar \omega > E_G$ ) в полученных ГС сильно различается (рис. 2, кривые 1-4), что приводит к изменениям полной ширины спектральных полос  $\eta$  на их полувысоте  $\delta_{1/2}$  от 20 до 400 мэВ в разных ГС. Для гетероструктур с наиболее широкополосным спектром ФЧ (рис. 2, кривая 4) энергетическое положение абсолютного максимума  $\hbar \omega_m$  совпадает с  $E_G$  CuInSe<sub>2</sub> [4].



**Рис. 1.** Стационарная вольт-амперная характеристика гетероструктуры  $In_2O_3/CdS/CuInSe_2$  при T = 300 К. Положительный потенциал внешнего смещения отвечает CuInSe<sub>2</sub>.

По мере усиления коротковолнового спада  $\eta$  и соответствующего этому снижению  $\delta_{1/2}$  абсолютный максимум ФЧ смещается в сторону длинных волн. Обращает на себя внимание тот факт, что как только  $\hbar\omega_m$  становится ниже  $E_G$  CuInSe<sub>2</sub>, коротковолновый спад  $\eta$  становится практически экспоненциальным вплоть до близких к  $E_G$  энергий фотонов (рис. 2, кривые 1–3). С учетом того что геометрические параметры широкозонных компонент в исследованных ГС были близкими, есть основания связывать резкий коротковолновый спад  $\eta$  с преимущественной локализацией активной области ГС в CuInSe<sub>2</sub> вследствие различий в уровнях легирования подложек и слоев CdS $\langle In \rangle$ . Для приведенных на рис. 2 спектров  $\eta$  как раз и наблюдается ослабление коротковолнового спада

фоточувствительности по мере снижения концентрации электронов в слоях  $CdS\langle In \rangle$ .

При освещении линейно поляризованным излучением вдоль нормали к фронтальной плоскости ГС  $In_2O_3$  (угол падения  $\Theta = 0^\circ$ ) ФЧ всех полученных ГС не зависит от положения вектора электрического поля световой волны относительно плоскости падения излучения во всей области фоточувствительности (рис. 3). Это обстоятельство определяется поликристалличностью подложек и слоев *n*-CdS, которая замывает естественный фотоплеохроизм полупроводников [5]. В условиях  $\Theta > 0^\circ$  возникает различие в значениях фототоков для *p* и *s*-поляризаций  $i^p > i^s$  (рис. 3, кривые 1, 1' и 2, 2'). Вследствие этого во всей области ФЧ коэффициент наведенного фотоплеохроизма

$$P_{I} = (i^{P} - i^{S}) / (i^{P} + i^{S})$$
(2)

становится отличным от нуля. Зависимость  $P_I$  от угла падения  $\Theta$  в исследованных гетероструктурах характе-



**Рис. 2.** Спектральные зависимости относительной квантовой эффективности фотопреобразования гетероструктур  $In_2O_3/CdS/CuInSe_2$  при T = 300 К. Номера образцов: I - 6, 2 - 1, 3 - 7, 4 - 10-1. Освещение неполяризованным излучением со стороны  $In_2O_3$ . Концентрация электронов в слоях CdS при T = 300 К  $n \cdot 10^{-19}$ , см<sup>-3</sup>: I - 2, 2 - 0.8, 3 - 0.5, 4 - 0.15.

Физика и техника полупроводников, 1999, том 33, вып. 7



**Рис. 3.** Зависимости фототоков  $(1, 1' - i^p, 2, 2' - i^s)$  и коэффициента наведенного фотоплеохроизма (3, 4) от угла падения линейно поляризованного излучения для гетероструктуры In<sub>2</sub>O<sub>3</sub>/CdS/CuInSe<sub>2</sub> при T = 300 К. (Образец 7.  $\lambda$ , мкм: I, 2, 3 - 1.160, 1', 2', 4 - 0.994).

ризуется квадратичным законом  $P_I \sim \Theta^2$  во всей области ФЧ (рис. 3, кривые 3 и 4), что соответствует [7] и позволяет плавно контролировать величину  $P_I$  посредством изменения  $\Theta$ .

На рис. 4 приведены типичные спектральные зависимости коэффициента наведенного фотоплеохроизма для нескольких ГС. Как следует из этого рисунка, коэффициент наведенного фотоплеохроизма в таких структурах может обнаруживать осцилляции или оставаться постоянным. Сам факт наличия осцилляций и изменений величины  $P_1$  среди исследованных ГС с одной и той же границей воздух/In<sub>2</sub>O<sub>3</sub>, через которую излучение поступает в активную область ГС, находится в противоречии с анализом [7]. Оценка коэффициента наведенного фотоплеохроизма на основании [7] и показателя преломления n = 2.14 для In<sub>2</sub>O<sub>3</sub> [8] в таких структурах приводит к величине 36–38 % ( $\Theta = 75^{\circ}$ ). Экспериментальные

3\* Физика и техника полупроводников, 1999, том 33, вып. 7

значения  $P_I$  приближаются к этому пределу только в длинноволновой области и для некоторых из полученных структур (рис. 4). Аналогичные особенности наблюдались ранее в других типах ГС и объяснены интерференционными явлениями [3,9–12]. По-видимому, и для исследованных в данной работе ГС естественно связать возникновение осцилляций фотоплеохроизма с интерференцией излучения в слоях  $In_2O_3$ . Различия в амплитуде осцилляций и энергетическом положении экстремумов  $P_I$  (рис. 4) в таком случае указывают на колебания в параметрах просветляющих слоев в таких ГС.

Важно подчеркнуть, что только в области энергий, отвечающих максимумам P<sub>I</sub>, угловые зависимости фототоков находятся в качественном соответствии с результатами анализа процесса прохождения световой волной границы раздела двух сред на основании соотношений Френеля [13,14]. В этом случае фототок *i<sup>p</sup>* с ростом  $\Theta$  вначале возрастает, проходит через максимум в окрестности псевдобрюстеровского угла и только затем спадает, тогда как is монотонно падает с увеличением угла падения (рис. 3, кривые 1 и 1'). Проявляющееся увеличение  $i^p$  характеризует слои  $In_2O_3$  как достаточно совершенные и свидетельствует о снижении потерь на отражение *p*-волны. Обнаруженные различия в угловых зависимостях фототоков приводят к тому, что их поляризационная разность  $\Delta i = i^p - i^s$ , а следовательно, и сам коэффициент Р<sub>1</sub> достигают своего максимального значения.

С удалением энергии падающих фотонов от точки, отвечающей максимуму в спектрах *P*<sub>I</sub> (рис. 4, кри-



**Рис. 4.** Спектральные зависимости коэффициента наведенного фотоплеохроизма гетероструктур  $In_2O_3/CdS/CuInSe_2$  при T = 300 K. Номера образцов: 1 - 7, 2 - 3, 3 - 10-1.  $\Theta = 75^\circ$ .

вые 1 и 2), в угловой зависимости  $i^s$  возникает принципиальное отличие от предсказываемого из соотношений Френеля понижения  $i^s$  (рис. 3, кривая 2). Эти отличия максимальны в окрестности энергии минимума в спектре  $P_I$  и заключаются в том, что фототок  $i^s$ , максимально сближаясь с  $i^p$ , обнаруживает аналогичную  $i^p$  угловую зависимость с максимумом. Сам факт проявления минимумов  $P_I$  свидетельствует о снижении потерь на отражение не только для p-, но и для *s*-волны. Такое сближение значений  $i^p$  и  $i^s$  (рис. 3, кривые 2 и 2'), естественно, приводит к тому, что коэффициент наведенного фотоплеохроизма, как и  $\Delta i$ , достигает своего минимума.

Для ГС с практически постоянным значением  $P_I$  в области их ФЧ (рис. 4, кривая 3) угловые зависимости фототоков  $i^p$  и  $i^s$  были такими же, как в области энергии минимума  $P_I$  для рассмотренного выше случая. Это означает, что в таких ГС условия просветления в отличие от рассмотренных выше структур удается удовлетворить в достаточно широкой спектральной области.

В заключение отметим, что максимальная азимутальная ФЧ в полученных структурах достигает 60 мА/(Вт · град) при T = 300 К, что на порядок выше известного для такого типа барьеров значения в отсутствие просветляющего покрытия [15]. К тому же в полученных ГС нанесение просветляющего покрытия позволяет реализовать узкоселективный режим фоторегистрации ( $\delta_{1/2} = 20-40$  мэВ), причем ширина полосы и ее энергетическое положение контролируются параметрами ГС. Также следует указать на возможности использования поляризационной фотоэлектрической спектроскопии для диагностики готовых ГС и, соответственно, выбора необходимых технологических режимов их создания.

## Список литературы

- A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Herman. Appl. Phys. Lett., 65, 198 (1994).
- [2] H.W. Schock. Appl. Surf. Sci., 92, 606 (1996).
- [3] V.Yu. Rud', Yu.V. Rud', T. Walter, H.W. Schock. Inst. Phys. Ser., No 152 (ICTMC-11, Salford Sep., 8–12, 1997; IO Publ. Ltd., 1998)p. 971.
- [4] L.Stolt, J. Hodstrom, J. Kessler, M. Ruch, K.-O. Velthaus, H.W. Schock. Appl. Phys. Lett., 62, 597 (1993).
- [5] J.L. Shay, J.H. Wernick. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford, Pergamon Press, 1975).
- [6] Ф.П. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, 30, 1921 (1996).
- [7] G.A. Medvedkin, Yu.V. Rud'. Phys. St. Sol. (a), 67, 333 (1981).
- [8] Актуальные проблемы материаловедения, Под ред. Э. Калдиса. (М., ИИЛ, 1982) с. 76.
- [9] V. Rud', Yu. Rud', T. Walter, H.W. Schock. *Abstracts IC POLYSE'98*, 13–18.09.1998 (Schwabisch Gmünd, Germany, 1998) P. 37.
- [10] В.М. Ботнарюк, Л.В. Горчак, С.Д. Раевский, В.Ю. Рудь, Ю.В. Рудь, Д.А. Щербань. ЖТФ, 68, 72 (1998).

- [11] В.М. Ботнарюк, В.В. Бельков, Ю.В. Жиляев, С.Д. Раевский, В.Ю. Рудь, Ю.В. Рудь, Л.М. Федоров. ФТП, **32**, 1206 (1998).
- [12] В.Ю. Рудь. Тез. Третьей Санкт-Петербургской Ассамблеи молодых ученых и специалистов (СПБ., 1998) с. 76.
- [13] Г.С. Ландсберг. Оптика (М., Высш. шк., 1976).
- [14] И.С. Горбань. Оптика (Киів, Вища шк., 1979).
- [15] N.N. Konstantinova, M.A. Magomedov, V.Yu. Rud', Yu.V. Rud'. Jpn. J. Appl. Phys., **32-3**, 106 (1993).

Редактор В.В. Чалдышев

## Greation and properties of In<sub>2</sub>O<sub>3</sub>/CdS/CuInSe<sub>2</sub> heterostructures

V.Yu. Rud', Yu.V. Rud'\*

St. Petersburg State Technical University, 195251 St. Petersburg, Russia
\*A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

E-mail: rudvas@uniys.hop.stu.neva.ru