Исследование поляризованной фотолюминесценции толстых эпитаксиальных слоев GaN

© Ю.В. Жиляев, В.В. Криволапчук, И.Н. Сафронов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 30 ноября 1998 г. Принята к печати 2 декабря 1998 г.)

Исследовались поляризационные спектры фотолюминесценции нитрида галлия. Из анализа спектров следует, что неоднородное уширение линии излучения, имеющей значение полуширины больше 20 мэВ, может определяться дисперсией углов θ_c осей симметрии различных кристаллитов, образующих эпитаксиальный слой GaN, по отношению к поверхности слоя. Вариация угла падения и фокусировки возбуждающего лазерного пучка, а также угла регистрации фотолюминесценции позволяет использовать поляризационные измерения фотолюминесценции для прецизионной диагностики качества слоев GaN.

Введение

В настоящее время GaN является одним из наиболее перспективных широкозонных материалов благодаря тому, что на его основе возможно создание голубых и ультрафиолетовых лазеров и высокотемпературных полупроводниковых приборов [1,2]. Для создания приборных структур на основе GaN очень удобно иметь подложку из GaN. С этой целью методом газофазной эпитаксии в хлоридной системе нами выращивались толстые (толщиной d > 300 мкм) слои GaN (с кристаллической структурой вюртцита — wz) на сапфировой подложке. После отделения GaN от сапфира эти толстые (по существу объемные) слои используются в качестве подложки для создания приборных структур. На полученных таким образом толстых слоях GaN наблюдается фотолюминесценция в ультрафиолетовом диапазоне.

Поскольку GaN имеет гексагональную структуру, можно ожидать, что спектральные характеристики излучения будут зависеть от взаимной ориентации оси симметрии (C_6), волнового вектора (k) и вектора напряженности электрического поля (E) света [3]. Цель настоящей работы — исследование спектральных особенностей поляризованной фотолюминесценции толстых эпитаксиальных слоев GaN со структурой вюртцита.

Образцы и эксперимент

Образцы представляли собой эпитаксиальные слои GaN *n*-типа проводимости, выращенные на подложках сапфира с ориентацией (0001). Данные рентгеноструктурного анализа показывают, что в этом случае ось C₆ ориентирована в направлении роста (перпендикулярна эпитаксиальному слою). Толщина слоев находилась в интервале 200÷400 мкм. Схема эксперимента представлена на рис. 1. Возбуждение осуществлялось излучением импульсного азотного лазера с длиной волны $\lambda_{ex} = 337$ нм (частота следования 100 Гц) с вектором электрического поля, во всех случаях направленного перпендикулярно оси C₆ (E \perp C₆). Угол между возбуждающим лазерным

лучом и нормалью к плоскости образца был фиксированным и равным 42°. Лазерный луч фокусировался в пятно диаметром $L_{\rm ex} \approx 400$ мкм. Спектры люминесценции исследовались при температурах T = 77 и 300 К. Регистрация спектров фотолюминесценции (ФЛ) осуществлялась в *s*- и *p*-поляризациях с помощью спектрометра СДЛ-2 в режиме счета фотонов. Этот спектрометр вносит (в интересующем нас спектральном диапазоне) поляризацию, не превышающую 4%, и поэтому измерения проводились без деполяризующего клина.

Спектры ФЛ GaN исследовались на серии образцов с направлением оси C₆, перпендикулярным плоскости образца. Для всех образцов при температурах T = 77 и 300 K регистрировалась серия спектров: фиксировалось пространственное положение образца и записывался спектр как в неполяризованном свете (отсутствие поляроида перед щелью спектрометра), так и в линейно *s*- и *p*-поляризованном свете (присутствует поляроид перед щелью спектрометра). Затем образец поворачивался на 90° вокруг оптической оси (c-d) (рис. 1) и процедура регистрации спектра повторялась. Таким образом для каждого образца записывалась серия из шести спектров.

Результаты и обсуждение

Во всех случаях в спектрах ФЛ исследованных образцов присутствует одна линия І2, максимум излучения которой при $T = 77 \, \text{K}$ расположен (в зависимости от конкретного образца) в интервале энергий 3.461÷3.479 эВ, а ширина линии на полувысоте (FWHM) находится в пределах 21 ÷ 50 мэВ. Природа этой линии излучения приписывается аннигиляции экситона, связанного на нейтральном доноре [4,5]. При $T = 300 \,\mathrm{K}$ энергия максимума излучения и FWHM равны 3.407 эВ и 98 мэВ соответственно. Типичный вид спектров излучения при T = 77 и 300 К представлен на рис. 2, *a*, *b*. При исследовании спектров ФЛ было обнаружено, что в наблюдаемой линии излучение поляризовано. Степень поляризации в максимуме линии определялась по формуле $P = (I_p - I_s)/(I_p + I_s)$ $(I_p, I_s -$ интенсивности

Рис. 1. Схема экспериментальной установки. РМ — фотоумножитель.

излучения с *p*- и *s*-поляризацией) и достигала для некоторых образцов величины 47%. Кроме того было обнаружено, что как в *s*-, так и в *p*-компонентах поляризации излучения наблюдалось значительное сужение линии люминесценции I_2 (рис. 2).

Поскольку GaN имеет гексагональную структуру, то, как показано в [6], следует ожидать анизотропии в ориентации излучающих диполей и, следовательно, зависимости спектральных характеристик излучения от взаимной ориентации оси симметрии С₆, волнового вектора излучения k и вектора напряженности электрического поля излучения Е. Это означает, что спектр излучения при (k, E) \perp C будет отличаться от спектра при (k, E) || С, т.е. спектры будут разными в зависимости от выбираемой при регистрации ориентации линейной поляризации. Для того чтобы убедиться в этом, исследовались спектры поляризованного излучения в образце, в котором ось С₆ лежит в плоскости слоя (анизотропная геометрия эксперимента). Действительно, в этом случае наблюдалось существенное отличие интенсивности линии I₂ в s- и p-компонентах поляризации и заметное сужение линии ФЛ. Более того, выяснилось, что степень поляризации отслеживает поворот образца на 90° вокруг оси (c-d), перпендикулярной плоскости эпитаксиального роста. Такая анизотропия ФЛ исследовалась в работе [7]. Авторы этой работы показали, что фотолюминесценция GaN (wz) зависит от угла между вектором поляризации и направлением оси $C_6 (\varphi_c)$. При этом наблюдалось некоторое изменение полуширины линии ФЛ. Естественно ожидать, что в образцах с осью С₆, направленной перпендикулярно плоскости образца (изотропная геометрия эксперимента), поляризационная зависимость интенсивности ФЛ от ориентации вектора

Физика и техника полупроводников, 1999, том 33, вып. 7

линейной поляризации должна быть слабой. Однако в ряде исследованных образцов наблюдалось значительное (в 2 раза) сужение линии I_2 при регистрации ФЛ в линейной поляризации. Сравнение серий спектров различных образцов показало, что указанное сужение линии I_2 тем больше, чем больше изначальная полуширина линии, зарегистрированная без анализа поляризации.

Ключом к пониманию такого поведения линии ФЛ в изотропной геометрии являются следующие обстоятельства: 1 — поляризационная зависимость ширины линии от угла φ_c , наблюдаемая в случае анизотропной геометрии эксперимента: 2 — мозаичная структура эпитаксиальных слоев GaN, образованная из отдельных кристаллитов с характерными размерами $l \approx 1 \div 10$ мкм. Из того факта, что размер излучающей области ($L_{ex} \ge 400$ мкм) существенно превосходит размер одного кристаллита, следует, что наблюдаемая линия ФЛ представляет собой суммарное излучение большого числа отдельных кристаллитов (неоднородная ширина линии). При этом оси С₆ отдельных кристаллитов могут образовать "веер" (конус) направлений. Ясно, что поляризационная особенность полуширины линии может наблюдаться в отсутствие усреднения по направлениям осей С₆ в этом веере. Отсюда следует, что веер асимметричен, т.е. оси С₆ отдельных кристаллитов образуют пучок, смещенный как целое на некоторый угол θ_c относительно нормали. Угол φ_c образуется в этом случае вектором линейной поляризации и направлением проекции результирующей оси пучка на плоскость образца. В этом случае неоднородное уширение линии определяется дисперсией угла θ_c пучка осей С₆ отдельных кристаллитов, дающих вклад в линию излучения I2. Это позволяет сделать вывод о том, что поведение полуширины линии (FWHM) в случае

Рис. 2. Спектры ФЛ эпитаксиальных слоев GaN при T = 77 (*a*) и 300 K (*b*). *1* — не поляризованная, 2 — поляризованная (*s*, *p*) люминесценция.

изотропной геометрии аналогично случаю анизотропной геометрии эксперимента, рассмотренного выше и описанного в [7,8]. В рамках такой модели различная величина сужения (в *s*-, *p*-поляризации) линии I_2 в разных образцах объясняется изначально различной величиной дисперсии углов θ_c в этих образцах.

Таким образом, исследование линейной поляризации линии I_2 позволяет сделать вывод о том, что неоднородное уширение этой линии излучения, имеющей значение FWHM больше 20 мэВ, может определяться (при условии $l < L_{ex}$) дисперсией углов θ_c осей симметрии различных кристаллитов, образующих эпитаксиальный слой GaN, по отношению к нормали. Возникновение дисперсии углов θ_c обусловлено, вероятно, влиянием деформаций, присутствующих в эпитаксиальных слоях GaN. Конкретные механизмы этого влияния требуют дальнейших детальных исследований. Методический

аспект заключается в том, что при анализе спектров ФЛ GaN необходимо принимать во внимание поляризационные характеристики. Кроме того, из приведенных выше результатов исследования ФЛ следует, что вариация в эксперименте угла падения и фокусировки возбуждающего лазерного пучка, а также угла регистрации фотолюминесценции позволяет использовать поляризационные измерения фотолюминесценции для прецизионной диагностики качества слоев GaN.

Работа выполнена при поддержке Российского фонда фундаментальных исследований 97-02-18098.

Список литературы

- H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns. J. Appl. Phys., 76, 1363 (1994).
- [2] M. Asif Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Shaff. Appl. Phys. Lett., 66, 1083 (1995).
- [3] Bao Oinncheng, Zhang Fungleng, Shi Ke, Dai Rensong, Xu Xurong. Sol. St. Commun., 59, 599 (1986).
- [4] R. Dingle, D.D. Shell, S.E. Stokowski, M. Ilegems. Phys. Rev. B, 4, 1211 (1971).
- [5] W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, B. Goldenberg. Appl. Phys. Lett., 66, 985 (1995).
- [6] D.G. Thomas, J.J. Hopfield. Phys. Rev., 128, 2135 (1962).
- [7] K. Domen, K. Horino, A. Kuramata, T. Tanahashi. Appl. Phys. Lett., 71, 1996 (1997).
- [8] I. Nikitina, V. Dmitriev. Inst. Phys. Conf. Ser., 147, 431 (San Diego, CA, 1997).

Редактор Л.В. Шаронова

Study of polarized luminescence of thick epitaxial GaN layers

Yu.V. Zhilayev, V.V. Krivolapchuk, I.N. Safronov

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia