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Photoluminescence of erbium-doped silicon: excitation power
dependence
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The intensity of the photoluminescence of erbium in silicon is analysed by a model which takes into account the
formation of free excitons, the binding of excitons to erbium ions, the excitation of inner-shell 4 f electrons of erbium
ions and their subsequent decay by light emission. Predictions of this model for the dependence of luminescence
intensity on laser excitation power are compared with experimental observations. The results for float-zone and
Czochralski-grown silicon in which erbium is introduced by implantation with or without oxygen co-implantation
are remarkably similar. To obtain agreement between model analysis and experimental data it is necessary to include
in the model terms describing energy dissipation by an Auger process of both the erbium-bound excitons and the
erbium ions in excited state with free electrons in the conduction band. A good quantitative agreement is achieved.

1. Introduction

The phenomenon of luminescence of rare-earth doped
semiconductors is presently under intense study. In the
more fundamentally oriented research, the complex physical
processes active in energy transfer from excitation in the
entrance channel to light emission in the output channel
are investigated. Stimulated by the perspective of practical
application of this light source, erbium in silicon, emitting
at wavelength of 1.54µm, is a prominent system. In a
currently accepted model energy fed into the system leads
to light emission by erbium ions in a multi-step process.
Radiation incident on the silicon, with photon energy larger
than its bandgap, creates free electrons and holes. Free
carriers combine into excitons which can be trapped at
the erbium ions. The energy of erbium-bound excitons is
transferred to erbium ions and results in excitation of 4 f core
electrons from the 4I15/2 ground state into the 4I13/2 excited
state. Upon decay of excited erbium ions the characteristic
luminescence is produced. In the present report this chain
of processes is analysed in a mathematical model with an
aim of achieving a quantitative description.

2. Photoluminescence model

2a. Energy transfer without Auger processes

The physical model as mentioned above, that will be
considered in this paper, is illustrated in Fig. 1. In a
recent paper by Bresler and co-workers the model, however
without the Auger processes, has been put on a mathe-
matical basis [1]. A set of rate equations was formulated
for free electrons, with concentration n, free excitons,
concentration nx, erbium-bound excitons, concentration nxb

and erbium ions in excited state, concentration n∗Er. The
steady state is described by the balance equations (1) to (4),
to be discussed as follows.

The chain of processes leading to photoluminescence has
as the first step the generation of free electrons and holes, to
equal concentrations, with rate G by the incident light. Free
carriers can combine in a second-order process with rate
γxn2 into free excitons. Trapping of the excitons at erbium
sites will be proportional to both the concentrations of the
free excitons and the available free erbium sites. The latter
concentration is given as the total concentration of erbium
nEr multiplied by the fraction of free sites [(nEr − nxb)/nEr].
Energy will be transferred to erbium 4 f core electrons
with a transfer time τ ∗ but again only to the erbium ions
still available in their ground state, i. e. to the fraction
[(nEr − n∗Er)/nEr]. At high excitation power these fractions
given between square brackets will tend to zero and lead
to saturation of luminescence output. This manifestation
of saturation is related to exhaustion of available erbium
centres. Finally, luminescence is produced by the decay
with time constant τd of erbium ions n∗Er in the excited state.
The photon emission rate equal to n∗Er/τd is the quantity
measured in the experiment.

Reverse processes as indicated in Fig. 1 by arrows pointing
to the left, are thermally activated. They include the
dissociation of excitons into free electrons and holes f nx

requiring energy gain of Ex, the release of excitons from
erbium trapping sites c f nxb, and a back transfer process in
which an erbium-bound exciton is recreated from an excited
erbium ion. Though these reverse processes hamper the
energy transfer towards light emission, they do not remove
energy from the chain. The coefficients of forward and
reverse processes are related by considerations of detailed
balancing.

Energy is permanently lost by processes which remove
energy irreversibly from the chain. Such processes, as
indicated in Fig. 1 by vertical arrows downwards, are
recombination of electrons and holes via other centres, with
rate γn2, and recombination of free excitons directly or via
alternative centres, nx/τx. The Auger processes represented
in Fig. 1 also remove energy from the luminescence path
irreversibly.
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Figure 1. Two stream-model for the photo-excitation of erbium luminescence showing generation and loss of free electrons n, free
excitons nx, erbium-bound excitons nxb and erbium ions in excited state n∗Er. Notation: η1 = (nEr − nxb)/nEr, η2 = (nEr − n∗Er)/nEr .

Balance equations based on these processes are

G + f nx = γn2 + γxn
2, (1)

γxn
2 + c fxbnxbNx

= cnxnEr
[
(nEr − nxb)/nEr

]
+ f nx + nx/τx, (2)

cnxnEr
[
(nEr − nxb)/nEr

]
+ n∗Er f1/τ

∗

= nxb
[
(nEr − n∗Er)/nEr

]
/τ ∗ + c fxbnxbNx, (3)

and

nxb
[
(nEr − n∗Er)/nEr

]
/τ ∗ = n∗Er/τd + n∗Er f1/τ

∗. (4)

Generation terms are given on the left hand sides of
these equations; loss terms appear in each case on the
right hand side. An exact solution for the equations, in
the form of a quadratic equation for n∗Er, is presented by
Bresler, et al. [1]. The result takes a more simplified form
by the restriction to low temperatures, e. g., liquid-helium
temperature, when all reverse processes, which require
thermal activation, are suppressed. Under these conditions,
when f = fxb = f1 = 0, one obtains

a0
(
n∗Er/nEr

)2
−
(
b0 + b2G

)(
n∗Er/nEr

)
+ c2G = 0, (5)

with
a0 = 1 + cnErτx

[
1 + (τ ∗/τd)

]
, (5a)

b0 = 1 + cnErτx, (5b)

b2 = γxτxcτd
[
1 + (τ ∗/τd)

]
/γ, (5c)

and
c2 = γxτxcτd/γ. (5d)

In its general form, the equation predicts saturation of n∗Er
at the level n∗Er/nEr = c2/b2 for high excitation power G.
For low power a linear relationship n∗Er/nEr = (c2/b0)G is
predicted. In comparing experimental data with these model
equations one must be aware that neither generation power
nor output luminescence are known very well in absolute
numbers. For instance the volume in the sample where
excitation takes place is not well defined. For this reason it is
of advantage to eliminate these uncertain factors by resorting
to relative units. As regards luminescence intensity the
obvious unit for normalization is the saturation value c2/b2.
A dimensionless normalized intensity is therefore introduced
as I ≡ (n∗Er/nEr)/(c2/b2). For the excitation power the unit
is obtained as the value at which the extrapolated linear
increase at low power crosses the saturation level. This will
be at G1 = b0/b2. The normalized power P ≡ G/G1 is
again a dimensionless quantity. In terms of normalized units
equation (5) is modified into

I2 − α(1 + P)I + αP = 0, (6)

with
α ≡ b0b2/a0c2. (6a)

It turns out that the dependence of intensity I on generation
power P is governed by one parameter α, through which
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Figure 2. Dependence of normalized luminescence output I as a function of normalized laser power input P; a) for the model without
Auger processes, b) for a model including strong Auger decay processes. Experimental data for three samples of type Fz-Si : Er, Cz-Si : Er
and Cz-Si : Er,O are given for unit power P = 1.

the specific aspects of the luminescence process as a whole
are represented. However, from equation (6) it is easily
concluded that for low power I = P, and for high power
I = 1, irrespective the value of the parameter α. In
normalized form the parameters a2, b0, b2 and c2, or in
basic more physical form γ, γx, c, τx, τ

∗ and τd, have no
effect on the power dependence in the low and high power
regions. Only at intermediate power, i. e., at P ≈ 1, the
results will depend on α. Only in the transition region
from linear increase to saturation the observed luminescence
does reveal insight into the luminescence process. The
most typical value to study the luminescence mechanism
is therefore at power P = 1. At this level the luminescence
intensity is given by

I = α − (α2 − α)1/2. (7)

From the equality α = b0b2/a0c2 and the parameters as
given by equations (5a–d) one concludes that 1 6 α 6 ∞.
For such values of α always solutions from equation (7)
do exist. For α = 1 one obtains I(P = 1) = 1 and for
α = ∞ one has I(P = 1) = 0.5. The range of possible
luminescence intensities at unit power P = 1 consistent with
equation (6) is restricted between 0.5 and 1. The limiting
curves for an extended power range are drawn in Fig. 2,a.

In Fig. 2, a also experimental data are included. They
result from measurements at liquid helium temperature on
three samples with different specifications. The sample
Fz-Si : Er is float zoned silicon implanted with erbium.
Sample labelled Cz-Si : Er is Czochralski silicon similarly im-
planted. The third sample, labelled Cz-Si : Er,O was co-doped
with oxygen by implantation. In all cases the luminescence
intensity was followed as a function of excitation power.
Experimental data are plotted for normalized power P = 1
at the observed values I ≈ 0.22. Obviously, this is outside
the range of results as can be described by the model.

2b. Energy transfer with Auger processes

One has to conclude that the presented model is unable
to provide the quantitative description of the luminescence
process. In order to improve the model energy losses
through Auger processes may be considered, as has been
explored before by Palm et al. [2]. Erbium-bound excitons
can dissipate their energy in an Auger process with involve-
ment of free electrons. Similarly, erbium ions in excited state
can decay in an Auger process, also with conduction band
electrons. These processes are as well indicated in Fig. 1.
In the balance equations they are implemented by including
on the loss side the Auger rates cAxnnxb and cAErnn∗Er. The
extended balance equations for bound excitons and excited
erbium ions become

cnxnEr
[
(nEr − nxb)/nEr

]
+ n∗Er f1/τ

∗

= nxb
[
(nEr − n∗Er)/nEr

]
/τ ∗ + c fxbnxbNx + cAxnnxb, (8)

and

nxb
[
(nEr − n∗Er)/nEr

]
/τ ∗

= n∗Er/τd + n∗Er f1/τ
∗ + cAErnn∗Er. (9)

In order to solve the new set of equations (1), (2), (8)
and (9) it is helpful to introduce appropriate simplifications.
Considering numerical values one may conclude that the
loss of free electrons and holes is dominated by their
recombination via traps with rate γn2. The loss via exciton
formation γxn2 is comparatively much less, i. e., γx � γ .
Under such conditions the energy transfer model can be
cascaded into two parts. In stream I the balance of
electrons is considered separately by equation (1). The
loss of electrons through exciton formation is ignored in this
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mainstream. At low temperature this leads to

G = γn2, (10)

n = (G/γ)1/2. (11)

The electron concentration obtained via this solution is used
to describe the Auger processes. Typical numbers are
G = 1022 cm−3s−1, γ = 10−10 cm3s−1 and n = 1016 cm−3.

In energy stream II the balance of free excitons, bound
excitons and excited erbium ions is separately considered.
Solution of the equations leads to a cubic equation in n∗Er/nEr,
which, accepting some approximation, can be factorized to
yield a quadratic equation(

a0 + a1G1/2 + a2G
)(

n∗Er/nEr
)2

−
(
b0 + b1G1/2 + b2G + b3G3/2

)(
n∗Er/nEr

)
+ c2G = 0, (12)

with

a0 = 1 + cnErτx
[
1 + (τ ∗/τd)

]
, (12a)

a1 =
[
(1 + cnErτx)cAErτd

+ 2cnErτx(τ
∗/τd)cAErτd

]
/γ1/2, (12b)

a2 = cnErτx(τ
∗/τd)(cAErτd)2/γ, (12c)

b0 = 1 + cnErτx, (12d)

b1 = (1 + cnErτx)(cAErτd + cAxτ
∗)/γ1/2, (12e)

b2 =
{

(1 + cnErτx)cAErτdcAxτ
∗

+ γxτxcτd
[
1 + (τ ∗/τd)

]}
/γ, (12f)

b3 = γxτxcτdcAErτd(τ ∗/τd)/γ3/2, (12g)

and

c2 = γxτxcτd/γ. (12h)

At low power the model equatioans reflect the linear
increase n∗Er/nEr = (c2/b0)G, just as before. At high power,
however, the consistent solution n∗Er/nEr = (c2/b3)/G1/2

predicts decreasing luminescence intensity upon increase of
the excitation source. Such behaviour is to be expected as
in the present case two independent saturation mechanisms
are active. The first one drives the concentration of erbium-
bound excitons, nxb, towards the concentration of available
erbium ions but is limited to stay below or become equal to
this concentration. The second saturation mechanism is the
combined action of the two Auger processes. At high power,
and hence high concentrations of free electrons, the Auger
mechanism removing excited erbium ions nonradiatively
becomes very effective. This will result in a reduction of
n∗Er, which becomes proportional to 1/n, or 1/G1/2. Such a
decrease has not been observed in the present experiments; it
has also not been reported in the literature. Inspection of the

equations shows that one should expect the decrease to set
in at excitation values where cAErτd(τ ∗/τd)(G/γ)1/2 > 1.
Considering numerical values (cAEr ≈ 10−12 cm3 · s−1,
τ ∗ ≈ 10−6 s) this corresponds to high values of G, near
and above 1026 cm−3 · s−1, which are not reached in actual
experiments. This can be attributed to the small value of
(τ ∗/τd), as τ ∗ is in the range of microseconds and τd

is of order milliseconds. Introducing the approximation
τ ∗/τd ≈ 0, equations (12) reduce in many respects to
equations (6). In particular the term b3G3/2 in equation
(12) is lost and the equation predicts saturation at c2/b2.

Both for low and for high power the solution of equation
(12) will be

n∗Er/nEr = c2G/(b0 + b1G1/2 + b2G). (13)

This result will also be valid for intermediate power in case
the Auger processes are strong. Following solution (13) one
has saturation at c2/b2, linear increase at low power with
(c2/b0)G, and G1 = b0/b2. Casting equation (13) in terms
of normalized units, as before, the result will read

I = P/(1 + βP1/2 + P) (14)

with
β = b1/(b0b2)

1/2, (14a)

or

β =
(
cAErτd + cAxτ

∗
)
/
[
cAErτdcAxτ

∗

+ γxτxcτd/(1 + cnErτx)
]1/2

. (14b)

Under the assumed condition of strong Auger effect this
reduces to

β =
(
cAErτd + cAxτ

∗
)
/
(
cAErτdcAxτ

∗
)1/2

, (14c)

or

β =
(
cAErτd/cAxτ

∗
)1/2

+
(
cAxτ

∗/cAErτd
)1/2

. (14d)

As usual the power dependence of the luminescence has its
linear increase at low power with I = P and saturates at high
power at I = 1. Features of the luminescence process are
only revealed at intermediate power, e. g., at P = 1, where
I = 1/(2 + β). For a general case parameter β will be
positive following equation (14b); for the case of strong
Auger effect β > 2, as follows from equations (14c,d).
Fig. 2, b illustrates the curves as obtained from equation (14)
for β = 0 and β = 2. Compared to the previous case,
without Auger effect, the transition region between linear
behaviour and saturation is broader. This is due to the
appearance of the P1/2 term as a consequence of the Auger
effect.

Considering again the experiment, the measured data for
the luminescence power dependence for sample Cz-Si : Er,O
are plotted in Fig. 3. The solid curve is the best fit using
equation (14) with parameter β = 2.25. Similar fits
were also made for the samples Fz-Si : Er and Cz-Si : Er,
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Figure 3. Photoluminescence intensity, in normalized units I , as a
function of applied laser excitation power, both in units G of laser
power and in normalized units P for the sample Cz-Si : Er,O. Exper-
imental data points and theoretical curve according to formula (14)
with parameter β = 2.25.

the parameter values are then β = 2.63 and 2.73, re-
spectively [3]. The data points for the three samples for
P = 1 and I = 1/(2 + β) are also plotted in Fig. 2, b.
The results for the three samples are quite similar with
β = 2.5 ± 0.25. With equation (14d) the result is
converted to (cAErτd/cAxτ

∗)±1 ≈ (4 ± 1). This compares
favourably with data as published in the literature, e. g.,
cAEr = 10−12 cm3 · s−1, τd = 10−3 s, cAx = 10−10 cm3 · s−1,
and τ ∗ = 4 · 10−6 s [2]. From the present analysis one
can only conclude that cAErτd/cAxτ

∗ is very similar in the
three kinds of material investigated. This can be due to an
accidental combination of parameters, but one is tempted
to believe that all process paramters, i. e., cAEr, τd, cAx

and τ ∗, have similar values. In such case the possible
difference in structure of the luminescent centres in the three
materials has very little influence on the efficiency of the
photoluminescence process.
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