Проблема селективного легирования в методе гидридной эпитаксии и электрофизические свойства квантово-размерных гетероструктур Ge/GeSi: B

© Л.К. Орлов, Р.А. Рубцова, Н.Л. Орлова

Научно-исследовательский физико-технический институт им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Получена 6 июля 1998 г. Принята к печати 7 июля 1998 г.)

В зависимости от параметров структуры изучены транспортные свойства различных групп носителей заряда в проводящих каналах периодической гетеросистемы Ge–Ge_{1-x}Si_x, выращиваемой гидридным методом на германии. Полученные результаты использованы для обсуждения проблемы селективного легирования слоев нанометровой толщины при использовании этого метода.

Напряженные квантово-размерные гетерокомпозиции на базе элементарных полупроводников Si, Ge и их твердых растворов вызывают повышенный интерес в связи с наметившейся перспективой их применения в устройствах современной кремниевой электроники. Особенно заметный прогресс наблюдается в микроэлектронике, где сравнительно недавно на основе Ge-Si-гетероструктур, выращенных методом молекулярно-лучевой эпитаксии (МЛЭ), были реализованы быстродействующие гетеробиполярные транзисторы [1,2] с временами переключения, близкими к соответствующим значениям для лучших GaAs-приборов. Привлекает внимание также возможность создания полевого транзистора с высокой подвижностью электронов и дырок на базе селективно легированных гетероструктур Si/Si_{1-x}Ge_x с двумерным газом носителей заряда в транспортных каналах. Достигнутые на гетероструктурах Si/Si_{1-r}Ge_r *n*-типа проводимости успехи в этом направлении обсуждаются в работе [3]. В работе [4] на базе системы $Ge/Si_{1-r}Ge_r$ была предпринята попытка получения предельно высокой для германий-кремниевых композиций дырочной подвижности с перспективой создания полевого транзистора на двумерных дырках.

В последнее десятилетие значительные усилия были затрачены на изучение в режиме квантового эффекта Холла [5,6] транспортных свойств двумерных дырок в селективно легированной гетеросистеме Ge/Ge_{1-x}Si_x, выращиваемой на германии. В настоящее время активно ведутся работы по исследованию в дальней инфракрасной области спектра микроволновых свойств этих структур в условиях разогрева газа носителей заряда импульсным электрическим полем [7–9]. Усилия, предпринимаемые в этой области и направленные на создание тонкопленочного лазера на горячих двумерных дырках, заставляют обратить более пристальное внимание на транспортные характеристики системы в слабых полях с целью детализации каналов протекания тока и уточнения механизмов рассеяния носителей заряда в них.

С другой стороны, для выращивания структур $Ge/Ge_{1-x}Si_x$ до сих пор использовался в основном гид-

ридный метод эпитаксии при атмосферном давлении в реакторе [10], не позволяющий в силу ряда объективных причин изготавливать структуры с резким профилем состава (размытие гетерограниц в системе, согласно [11], достигает 3 ÷ 4 нм). Переход от МЛЭ к газофазным методам эпитаксии становится необходимым шагом на этапе промышленного изготовления структур. В связи с этим выявление всех, в том числе и не особенно привлекательных особенностей гетероструктур, выращиваемых газофазными методами, равно как и причин, их порождающих, является важным моментом развития и совершенствования технологии.

В работе [11], ориентируясь на опубликованные ранее исследования, в том числе электрофизическими методами, мы показали, к каким ограничениям при изучении электронно-дырочных состояний в слоях структуры Ge-Ge_{1-x}Si_x, выращиваемой гидридным методом, может приводить расплывание профиля состава по периоду сверхрешетки (СР). Цель настоящей работы заключалась в исследовании зависимости подвижности дырок в слоях Ge гетероструктуры от уровня концентрации примеси в барьерных слоях и в оценке степени расплывания селективно легирующего δ-слоя по периоду СР. Экспериментальные исследования проводились методом эффекта Холла на образцах селективно легированных бором СР (Ge/Ge_{1-x}Si_x:B), выращиваемых методом гидридной эпитаксии при атмосферном давлении [5–10]. Максимальная концентрация атомов бора в слоях твердого раствора варьировалась в диапазоне $10^{17} \div 10^{19}$ см⁻³. Параметры структур — содержание Si в слоях (x), период сверхрешетки d_{SL} и число перодов (N), холловская подвижность (μ_H) и поверхностная концентрация p_s — приведены в табл. 1, 2. Результаты эксперимента сопоставляются с данными теоретического анализа.

Теоретический анализ включает в себя расчет с учетом формы потенциала концентраций различных групп носителей заряда в проводящих каналах СР и последующее вычисление их подвижностей. Расчет формы потенциала $\phi(x)$ на периоде структуры проводился путем численного решения уравнения Пуассона для резких гетерограниц в системе

$$\frac{d^2\phi}{dz^2} = \frac{4\pi e}{\varepsilon_i} \left\{ N_{ci}F_{0.5} \left(\frac{E_F - E_g - e\phi}{kT}\right) - N_{li}F_{0.5} \left(\frac{e\phi - E_F}{kT}\right) - N_{hi}F_{0.5} \left(\frac{e\phi - E_F}{kT}\right) + N_{ai} \right\}.$$
(1)

Здесь $F_{0.5}(e\phi)$ — интеграл Ферми, E_F — энергия Ферми, N_{ci} — плотность состояний электронов *i*-го слоя в зоне проводимости, N_{li} , N_{hi} — плотность состояний легких (l) и тяжелых (h) дырок в валентной зоне *i*-го слоя, N_{ai} — концентрация акцепторов в *i*-м слое. Расщепление дырочных подзон в слоях германия оценивалось по методике, предложенной в [12]. Характерная форма потенциала на периоде структуры в зависимости от концентрации легирующей примеси для образцов первой серии (табл. 1) и при двух температурах для образца 1125 из второй серии (табл. 2) представлена на рис. 1.

Концентрации дырок $p_{l,h}^i$ в отдельных слоях были найдены путем интегрирования по толщине *i*-го слоя гетероструктуры d_i

$$p_{l,h}^{i} = (1/d_{i}) \int_{d_{i}} p_{l,h}(z) dz.$$
 (2)

Рассчитанные зависимости концентраций дырок различного сорта от уровня легирования слоев приведены на рис. 2, *a*; характерные температурные зависимости концентраций дырок для образца 1125 представлены на рис. 2, *b*. Предполагается ступенчатый профиль легирования слоев Ge и Ge_{1-x}Si_x.

Таблица 1. Параметры структур первой серии

Номер образца	<i>х</i> , ат%	Ν	$d_{ m SL},$ нм	$\mu_H, \mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$ $(T=77\mathrm{K})$	10^{10} cm ⁻²
1256	6.0	72	45.5	15000	8.4
1261	7.4	72	53	20580	7.9
1263	7.0	72	70	14160	14.5
1264	10	81	39	10670	12.2
1265	6.0	81	44.5	9560	5.5
1266	6.6	64	50	11590	3.8
1274	8.0	81	59.5	10490	39
1275	6.5	81	57	8090	44

Таблица 2. Параметры структур второй серии

Номер образца	<i>х</i> , ат%	Ν	$d_{ m SL},$ нм	$\mu_H, \mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$ $(T=77\mathrm{K})$	$10^{11} \mathrm{cm}^{-2}$
1121	3.5	1	45	2330	30.7
1122	3.5	5	45	5360	4.31
1123	3.9	15	41.6	7480	2.34
1124	4.7	27	40.3	7840	2.5
1125	4.8	35	36.5	8830	2.3

Рис. 1. Форма потенциала на периоде СР. a — расчет для образцов из табл. 1 при T = 77 К и N_a (GeSi), 10^{17} см⁻³: I = 1, 2 = 3, 3 = 6; b — расчет для образца 1125 из табл. 2 при T = 4 (2) и 200 К (1).

Подвижности *j*-группы дырок в слоях структуры вычислялись для простоты с использованием следующих соотношений:

$$\mu_j = 1/(1\mu_{1j} + 1/\mu_{2j} + 1/\mu_{3j} + 1/\mu_{4j}), \qquad (3)$$

где

$$\mu_{1j} = e\tau/m_j = 2000[m_h(\text{Ge})/m_j](T/300)^{-2.3}$$
 (4)

— компонента подвижности, связанная с рассеянием на акустических и оптических фононах [13],

$$\mu_{2j} = (5.166 \cdot 10^{14}) / (N_{aj}^{0.64}) (T/300)^{0.625}$$
 (5)

Физика и техника полупроводников, 1999, том 33, вып. 3

Рис. 2. Концентрации тяжелых дырок в слоях $\text{Ge}_{1-x}\text{Si}_x(1)$ и Ge (2) и легких дырок в слоях германия (3), рассчитанные для образцов 1-й серии (табл. 1) в зависимости от уровня легирования слоев $\text{Ge}_{1-x}\text{Si}_x$ при T = 77 K (*a*) и для образца 1125 (табл. 2) в зависимости от температуры (*b*).

— компонента подвижности, связанная с рассеянием на ионизованной примеси (формула Брукса–Херинга) [14],

$$\mu_{3j} = e^3 m_j / 20\varepsilon_j h^3 N_0 \tag{6}$$

— компонента подвижности, связанная с рассеянием на нейтральных примесях с концентрацией *N*₀ [13],

$$\mu_{4j} = \alpha T^{-0.5} / x(1-x) \tag{7}$$

— рассеяние на флуктуациях состава [15].

Достижение предельно высоких значений подвижности носителей заряда в системе является в значительной степени основой, обеспечивающей возможность использования ее в практических устройствах микроэлектроники.

В структуре Ge/Ge_{1-x}Si_x с идеально резкими изменениями профиля состава и концентрации легирующей примеси можно было ожидать значительного роста величины подвижности двумерных дырок как с возрастанием

Физика и техника полупроводников, 1999, том 33, вып. 3

глубины квантовых ям при увеличении процентного содержания кремния в слоях твердого раствора [11], так и с увеличением их концентрации в транспортных каналах, вследствие экранировки фоновых рассеивающих центров и уменьшения их эффективного сечения рассеяния.

Однако в обсуждаемых нами периодических гетероструктурах Ge/Ge_{1-x}Si_x наблюдаемая на эксперименте зависимость холловской подвижности дырок μ_H от величины их поверхностной концентрации p_s ведет себя иным образом. Чаще всего на зависимостях (рис. 3)

Рис. 3. Концентрационные зависимости подвижности дырок μ в структурах Ge/Ge_{1-x}Si_x. Экспериментальные данные (точки): *I* — образцы 1-й серии (табл. 1), *2* — образцы 2-й серии (табл. 2). Сплошные линии: *a* — экспериментальная зависимость от объемной концентрации дырок *p* для объемного Ge из работы [16]; *b*, *c* — расчет при 77 и 4 K соответственно.

наблюдается спад подвижности дырок в СР с ростом их концентрации в слоях германия, хотя значения их и превышают во всей области легирования значения подвижности дырок в объемном германии (сплошная линия на рис. 3, a [16]). Один и тот же закон уменьшения подвижности дырок в СР Ge/Ge_{1-x}Si_x [17] и однородном германии [16] указывает на доминирующую роль в обоих случаях механизма рассеяния на примесных центрах.

На рис. 3, b, c приведены полученные нами экспериментальные данные, показывающие при T = 77 (4.2 K)характер зависимости подвижности дырок от их полной концентрации в проводящих каналах для образцов, представленных в табл. 1, 2. Структуры первой серии (табл. 1) были выращены приблизительно в одинаковых условиях, и при их изготовлении изменялся только поток диборана, обусловливая различный уровень селективного легирования N_a. Структуры второй серии, представленные в табл. 2, отличались общим числом периодов СР. Концентрация дырок в СР p_s в этом случае изменялась за счет приповерхностного изгиба зон. Особенно сильно она возрастала при уменьшении числа периодов СР до одного, одновременно сильно снижая при этом подвижность дырок в канале (рис. 3, c), возможно, за счет рассеяния на случайном поверхностном потенциале.

Исследования в сильных магнитных полях [5,6] транспортных свойств структур Ge/Ge_{1-x}Si_x, выращенных гидридным методом, показывают, что дырки в этих системах, несмотря на расплывание профиля, являются двумерными. Поэтому наблюдаемое падение подвижности дырок в проводящих каналах германия многослойной гетероструктуры с ростом концентрации легирующей примеси можно связать как с ростом числа тяжелых дырок в каналах (рис. 2, a) (уровень Ферми в слое Ge поднимается, заполняя носителями верхнюю *h*-подзону), так и с увеличением эффективности их рассеяния на дефектах структуры. Сплошная линия на рис. 3, b рассчитана для ситуации слабо легированных слоев германия. (Фоновый уровень легирования слоев германия не зависит от уровня легирования слоев твердого раствора и остается достаточно низким, $\sim 1 \cdot 10^{16} \, {\rm cm}^{-3}$). Видно, что учет только механизма, связанного с перераспределением дырок между подзонами, не обеспечивает наблюдаемый на эксперименте спад подвижности. Вероятнее всего, аналогично силану [11], импульс потока диборана в непрерывном потоке германа расплывается, обусловливая не только конечную ширину δ-слоя, но и наличие дополнительного примесного фона в слоях германия СР. Увеличение потока диборана приводит к возрастанию уровня легирования слоев Ge_{1-x}Si_x, соответственно и уровня примесного фона в слоях Ge, обусловливая в свою очередь довольно значительное падение подвижности двумерных дырок.

Таким образом, в обычно используемом режиме непрерывного роста границы фронтов импульсного потока диборана расплываются, обеспечивая подлегирование как спейсеров, так и проводящих каналов Ge. Сопоставление полученных данных с соответствующими за-

Рис. 4. Расчетные температурные зависимости подвижности μ (*a*) и проводимости σ (*b*). Расчет: 1 — тяжелые дырки в слоях Ge_{1-x}Si_x, 2 — тяжелые дырки в слоях Ge, 3 — легкие дырки в слоях Ge, штриховая линия — суммарная кривая по всем группам носителей, 4 — эксперимент.

висимостями, наблюдаемыми в однородно легированных монокристаллах германия (рис. 3, *a*), указывает на то, что уровень фоновой концентрации примеси в слоях Ge примерно на порядок ниже концентрации свободных дырок в них (концентрации легирующей примеси в слое Ge_{1-*x*}Si_{*x*}). Таким образом, характерная величина расплывания примеси по периоду структуры (расстояние, на котором уровень легирования спадает в 3 раза) составляет по оценкам $3 \div 4$ нм (толщина спейсера), что согласуется с величиной расплывания кремния, оцененной ранее в [11].

Учет вышеуказанного фактора, наряду с проведенными расчетами концентраций различных групп дырок, позволяет рассчитать в соответствии с экспериментальными данными температурную зависимость подвижности (рис. 4, a) и оценить вклад различных механизмов рассеяния во всем исследуемом температурном интервале. Проведенное для большого числа образцов численное моделирование показало, что в области низких температур именно механизм рассеяния дырок в слоях германия является главным фактором, ограничивающим величину их подвижности.

В заключение обратим внимание на температурную зависимость проводимости в низкотемпературной области. Видно, что она имеет здесь хорошо выраженный максимум. Нарастание на начальном участке проводимости $\sigma(T)$ связано с ростом подвижности легких дырок вследствие уменьшения роли примесного рассеяния (рис. 4, a). Спад при более высоких температурах обусловлен перераспределением носителей заряда между подзонами в слое германия (возрастает концентрация тяжелых дырок в верхней подзоне (рис. 2, b)). Так как в области температур ниже 50 К решеточное рассеяние не играет заметной роли, температуру решетки Т на рис. 4, *b* можно заменить на электронную температуру T_e , пропорциональную эффективному электрическому полю E. Тогда данная зависимость есть не что иное, как вольт-амперная характеристика структуры, а механизмы, обусловливающие ее вид, ответственны за наблюдаемые в работе [18] осцилляции высокочастотного тока.

В заключение авторы благодарят Российский фонд фундаментальных исследований (грант № 96-02-19278) и INTAS (грант № 96-0580) за финансовую поддержку работы.

Список литературы

- [1] T.C. Chen, E. Ganin, H. Stark et al. IEEE TED, **38**, 941 (1991).
- [2] A. Gruhle, A. Schuppen. Thin Sol. Films, 294, 246 (1997).
- [3] V.I. Kuznetsov, K. Werner, S. Redelaar, J.W. Metselaar. Thin Sol. Films, **294**, 263 (1997).
- [4] Y.H. Xie, E.A. Fitzgerald, D. Monroe, P.J. Silverman, G.P. Watson. J. Appl. Phys., 73, 8364 (1993).
- [5] B.A. Aronzon, N.K. Chumakov, J. Leotin, J. Galiber, L. Essaleh, A.L. Chernov, O.A. Kuznetsov, L.K. Orlov, R.A. Rubtsova, O.A. Mironov. *Superlat. Microstr.*, **13**, 159 (1993).
- [6] Ю.Г. Арапов, Н.А. Городилов, О.А. Кузнецов, В.Н. Неверов, Л.К. Орлов, Р.А. Рубцова, Г.И. Харус, А.Л. Чернов, Н.Г. Шелушинина, Г.Л. Штрапенин. ФТП, 27, 1165 (1993).
- [7] Л.К. Орлов, Ж. Леотен, Фу Хуа Янг, Н.Л. Орлова. ФТТ, 39, 2096 (1997).
- [8] L.E. Vorob'ev, L.E. Golub, D.V. Donetskii, E.A. Zibik, Yu.V. Kochegarov, D.A. Firsov, V.A. Schalygin, V.Ya. Aleshkin, O.A. Kuznetsov, L.K. Orlov, E. Towe, I.I. Saydashev, T.S. Cheng, C.T. Foxon. Proc. 23rd Int. Symp. on Compound Semicond. (St. Petersburg, 1996) (1997) p. 153.
- [9] V.Ya. Aleshkin, A.A. Andronov, A.V. Antonov, N.A. Bekin, I.V. Erofeeva, V.I. Gavrilenko, O.A. Kuznetsov, E.R. Lin'kova, I.G. Malkina, M. Moldavskaya, D.G. Revin, E.A. Uskova, B.N. Zvonkov. Proc. 23rd Int. Symposium on Compound Semicond. (St. Petersburg, 1996) (1997) p. 61.

- [10] M.G. Mil'vidskii, V.I. Vdovin, L.K. Orlov, O.A. Kuznetsov, V.M. Vorotynsev. *Growth of Crystals*, ed., by E.I. Givargizov and A.M. Melnikova (Consultants Bureau, N.Y.–London, 1996) v. 20, p. 13.
- [11] Л.К. Орлов, Р.А. Рубцова, Н.Л. Орлова, В.И. Вдовин. Труды совещания по системе Si-Ge (Нижний Новгород, ИФМ РАН, 1998) с. 127.
- [12] L.K. Orlov, V.Ya. Aleshkin, N.G. Kalugin, N.A. Bekin, O.A. Kuznetsov, B. Dietrich, G. Bacquet, J. Leotin, M. Brousseau, F. Hassen. J. Appl. Phys., 80, 415 (1996).
- [13] В.И. Фистуль. Сильно легированные полупроводники. (М., Наука, 1967) с. 116, 97.
- [14] В.Л. Бонч-Бруевич. С.Г. Калашников. Физика полупроводников (М., Наука, 1990) с. 491, 671.
- [15] Н.А. Агаев, Г.Х. Аждаров. Труды совещания "Исследование и применение твердых растворов германийкремний" (Баку–Элм, 1990) с. 56.
- [16] О.А. Голикова, Б.Я. Мойжес, М.С. Стильбанс. ФТТ, 3, 3105 (1961).
- [17] L.K. Orlov, A.V. Potapov, R.A. Rubtsova, Yu.G. Arapov, N.A. Gorodilov, N.G. Shelushinina, Fu Hua Yang, J. Leotin, M. Goiran. Thin Sol. Films, **294**, 208 (1997).
- [18] V.Ya. Aleshkin, N.A. Bekin, I.V. Erofeeva, V.I. Gavrilenko, Z.F. Krasil'nik, O.A. Kuznetsov, M.D. Moldavskaya, V.V. Nikonorov, V.M. Tsvetkov. Lithuanian Phys. J., 35, 368 (1995).

Редактор Л.В. Шаронова

The problem of selective doping in the hydride epitaxy method and electrophysical properties of quantum-well $Ge/Ge_{1-r}Si_r$: B heterostructures

L.K. Orlov, R.A. Rubtsova, N.L. Orlova

Physical and Technical Reserch Institute of Nizhny Novgorod State University, 603600 GSP-34 Nizhny Novgorod, Russia

Abstract Transport properties of different groups of charge carriers in conducting channels of periodic $\text{Ge}/\text{Ge}_{1-x}\text{Si}_x$ heterostructures have been studied as functions of the structure parameters. Results obtained were considered in connection with the problem of selective doping nanometer layers grown by hydride epitaxy.

Fax: (831) 2675553 E-mail: Orlov@ipm.sci-nnov.ru