Коэффициент оптического поглощения в монокристаллах PbGa₂Se₄

© Б.Г. Тагиев, Н.Н. Мусаева, Р.Б. Джаббаров

Институт физики Академии наук Азербайджана, 370143 Баку, Азербайджан

(Получена 7 октября 1997 г. Принята к печати 1 июля 1998 г.)

Представлены результаты оптических измерений в монокристалле PbGa₂Se₄. Определен характер оптических переходов в интервале энергии фотонов 2.24÷2.46 эВ в области температур 77÷300 К. Показано, что в интервале энергии фотонов 2.28÷2.35 эВ и 2.35÷2.46 эВ имеют место непрямые и прямые оптические переходы, которым соответствуют $E_{gi} = 2.228$ эВ и $E_{gd} = 2.35$ эВ при 300 К. Температурные коэффициенты E_{gi} и E_{gd} соответственно равны $-0.6 \cdot 10^{-4}$ и $-4.75 \cdot 10^{-4}$ эВ/К.

Введение

Соединение PbGa₂Se₄ впервые синтезировано авторами [1,2] и они установили, что этот полупроводник имеет орторомбическую структуру с параметрами a = 10.64 Å, b = 10.94 Å, c = 6.36 Å и пространственной группой *Bbmm*. PbGa₂Se₄ является фоточувствительным в области $0.4 \div 1.2$ мкм с кратностью $10^3 \div 10^4$ и высокоомным полупроводником с удельным сопротивлением около 10^{11} Ом · см при 300 К.

Выяснение механизмов электронных явлений в монокристаллах $PbGa_2Se_4$ требует исследования электрических и оптических свойств в широком интервале температур и энергии фотонов. Насколько нам известно, оптические свойства монокристаллов $PbGa_2Se_4$ не изучены. В настоящей работе представлены результаты исследований коэффициента оптического поглощения α в монокристаллах $PbGa_2Se_4$.

Выращивание монокристаллов PbGa₂Se₄

Соединение PbGa₂Se₄ синтезировано сплавлением в эвакуированных кварцевых ампулах (10^{-5} мм рт.ст.) компонентов, взятых в стехиометрических соотношениях. Монокристаллы PbGa₂Se₄ размерами $1 \times 1 \times 2$ см³ выращены методом Бриджмена–Стокбаргера. Это соединение обладает цепочечно-слоистой структурой. Его цвет меняется от желто-оранжевого до темно-красного в зависимости от толщины.

2. Методика измерений

Спектральная зависимость $\alpha(h\nu)$ образцов монокристаллов PbGa₂Se₄ измерена в интервале температур 77 ÷ 300 K и энергии фотонов 2.24 ÷ 2.46 эВ. Измерения проводились на установке, собранной на базе монохроматора МДР-12. Были исследованы различные монокристаллические образцы толщиной 35 ÷ 200 мкм.

3. Результаты исследований и их обсуждение

Результаты измерений $\alpha(h\nu)$ для образца толщиной 35 мкм при восьми значениях температуры представлены на рис. 1. Подобные результаты получены для других 5 образцов. Как видно из рисунка, зависимость $\alpha(h\nu)$ смешается в коротковолновую область с понижением температуры от 300 до 86 К. При этом $\alpha(h\nu)$ в интервале энергии фотонов 2.24 ÷ 2.46 эВ изменяется от 1000 до 2500 см⁻¹. Зависимость $\alpha(h\nu)$ состоит из трех участков: 1 — в интервале энергии фотонов 2.24 ÷ 2.28 эВ α почти не зависит от $h\nu$ или имеет место относительно слабый ее рост; 2 — заметный рост α в интервале энергии фотонов 2.35 ÷ 2.46 эВ.

Полученные результаты анализировались в соответствии с теорией непрямых и прямых оптических перехо-

Рис. 1. Спектральная зависимость коэффициента оптического поглощения в монокристалле PbGa₂Se₄ при температурах *T*, K: *1* — 86, *2* — 112, *3* — 134, *4* — 157, *5* — 214, *6* — 258, *7* — 271, *8* — 294.

Рис. 2. Зависимость $(\alpha - \alpha_b)^{1/2} \sim h\nu$ при температурах *T*, K: *I* — 86, *2* — 112, *3* — 134, *4* — 157, *5* — 214, *6* — 258, *7* — 271, *8* — 294.

Рис. 3. Зависимость $(\alpha - \alpha_b)^2 \sim h\nu$ при температурах *T*, K: I = 86, 2 = 112, 3 = 134, 4 = 157, 5 = 214, 6 = 258, 7 = 271, 8 = 294.

дов [3–6]. $\alpha(h\nu)$ можно представить в следующем виде:

$$\alpha = \alpha_i + \alpha_d + \alpha_b, \tag{1}$$

где α_i , α_d и α_b — коэффициенты оптического поглощения при непрямых, прямых переходах и при фоновом поглощении соответственно. Под фоновым поглощением имеется ввиду поглощение, обусловленное дефектами, рассеяние и др. [3–6].

При анализе зависимости $\alpha(h\nu)$ ее независимая или слабо зависимая от энергии фотонов часть α_b экстраполируется в сторону высоких энергий фотонов и вычитывается из общего поглощения, т.е. $\alpha - \alpha_b$. Принимая во внимание, что в малой области изменения энергии фотонов зависимости $(\alpha - \alpha_b)^{1/2}$ и $[(\alpha - \alpha_b)^{1/2}h\nu]$ от $h\nu$ почти одинаковы, экспериментальные данные представлены в координатах $(\alpha - \alpha_b)^{1/2} \sim h\nu$ (рис. 2). На этой зависимости выделяются два прямолинейных участка с различными наклонами, величины которых с понижением температуры уменьшаются. Эти участки обусловлены поглощением и испусканием фононов, и в этом случае коэффициент оптического поглощения определяется по формуле

$$\alpha(h\nu) = A\left(\frac{(h\nu - E_{gi} + k)^2}{e^{\theta/T} - 1} + \frac{(h\nu - E_{gi} - k)^2}{1 - e^{\theta/T}}\right), \quad (2)$$

где E_{gi} — ширина запрещенной зоны при непрямых переходах, k — энергия фонона, θ — характеристическая температура, T — абсолютная температура, A постоянная, слабозависящая от $h\nu$ и T. Если учесть, что первое слагаемое связано с поглощением (α_a), а второе с испусканием фононов (a_e), тогда наклоны прямых

Рис. 4. Температурная зависимость ширины запрещенной зоны для прямого и непрямого перехода: $1 - E_{gd}$, $2 - E_{gi}$.

 $\alpha_a^{1/2} = f(h\nu)$ и $\alpha_e^{1/2} = f(h\nu)$ можно определить следующими выражениями:

$$K_a = \left(\frac{A}{e^{\theta/T} - 1}\right)^{1/2}, \qquad K_e = \left(\frac{A}{1 - e^{\theta/T}}\right)^{1/2}.$$
 (3)

Из (3) легко получить следующее выражение:

$$\frac{K_e^2}{K_a^2} = \exp\frac{\theta}{T}.$$
(4)

Используя эти формулы, на основе экспериментальных данных при разных температурах определены величины E_{gi} , θ , k, которые приведены в таблице.

<i>T</i> ,K	<i>E_{gi}</i> , эВ	$K_e, \mathrm{cm}^{-1/2} \Im \mathrm{B}^{-1}$	K_a , cm ^{-1/2} \ni B ⁻¹	θ, K	<i>k</i> , эВ
86	2.235	105	70	69	0.0060
112	2.234	110	75	86	0.0074
134	2.233	110	80	86	0.0073
157	2.233	110	80	100	0.0086
214	2.231	145	100	159	0.0136
271	2.229	160	125	133	0.0115
294	2.228	185	159	123	0.0105

При больших энергиях ($h\nu \ge 2.35$ эВ) имеет место резкий рост коэффициента поглощения. Для определения характера оптических переходов в монокристалле PbGa₂Se₄ эта часть энергий фотонов анализирована согласно работе [7]. Установлено, что экспериментальные значения коэффициента поглощения хорошо укладываются на прямую в координатах ($\alpha - \alpha_b$)² ~ $f(h\nu)$ (рис. 3). Линейная зависимость ($\alpha - \alpha_b$)² от $h\nu$ свидетельствует о том, что край собственного поглощения в монокристаллах PbGa₂Se₄ формируется прямыми разрешенными оптическими переходами. При различных температурах ширина запрещенной зоны определена экстраполяцией прямых ($\alpha - \alpha_b$)² = $f(h\nu)$ к значению ($\alpha - \alpha_b$) = 0 (рис. 4).

Температурные зависимости E_{gi} и E_{gd} представлены на рис. 4, из которых для температурных коэффициентов этих величин соответственно получены значения $-0.6 \cdot 10^{-4}$ и $-4.75 \cdot 10^{-4}$ эВ/К.

Список литературы

- R. Eholie, I.K. Kom, J. Flahaut. C.R. Acad. Sci. Paris. Ser. C, 268, 700 (1969).
- [2] R. Eholie, O. Gorochov, M. Guittard, A. Mazurier, J. Flahaut. Bull. Soc. Chim. Fr., 747 (1971).
- [3] C. Jullien, M. Eddrief, K. Kambas, M. Balkanski. Thin. Sol. Films. 137, 27 (1986).
- [4] E. Cuerrero, M. Quintero, J.C. Wolley, J. Phys.: Condens, Matter, 2, 6119 (1990).
- [5] A.M. Elkorashy. Phys. St. Sol. (b), 135, 707 (1986).
- [6] S. Saha, U. Pal et al. Phys. St. Sol. (a), 114, 721 (1989).
- [7] Н.С. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).

Редактор В.В. Чалдышев

Coefficient of optical absorption in PbGa₂Se₄ single crystals

B.G. Tagiev, N.N. Musaeva, R.B. Djabbarov

Institute of Physics, Azerbaijan Academy of Sciences, 370143 Baku, Azerbaijan