Арсенид индия *p*-типа — квазибесщелевой полупроводник

© М.И. Даунов, И.К. Камилов, А.Б. Магомедов, А.Ш. Киракосян

Институт физики Дагенстанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 5 мая 1998 г. Принята к печати 29 июня 1998 г.)

При всестороннем давлении до значений $P = 1.5 \,\text{Па}$ и температурах T = 77.6 и 300 K по данным о полевых (до $H = 12 \,\text{к}$ Э и $E = 25 \,\text{B/cm}$) зависимостях коэффициента Холла R и удельном сопротивлении ρ в сильно легированном компенсированном полупроводнике p-InAs с концентрацией избыточных акцепторов $N_{\text{ext}} = (N_A - N_D) \simeq 10^{16} \,\text{сm}^{-3}$ и $N_A/N_D \simeq 0.9$ рассчитаны характеристические параметры носителей заряда. Выяснено, что на хвосте плотности состояний зоны проводимости располагается глубокая акцепторная зона и при низких температурах реализуется состояние типа сильно легированного полностью компенсированного полупроводника.

Анализируя известные данные об аномалиях кинетических свойств узкозонных дырочных сильно компенсированных полупроводников легированных (СЛКП) CdSnAs₂(Cu) [1–6], HgCdTe [7], InAs c $N_{
m ext}$ < 10¹⁷ см $^{-3}$ [8,9], InSb \langle Cr \rangle [12], мы пришли к выводу [4-6] о единообразии электронного спектра этих веществ, определяемого, с одной стороны, наличием глубокой акцепторной зоны, расположенной на хвосте плотности состояний зоны проводимости, а с другой стороны, влиянием крупномасштабного флуктуирующего потенциала. Поскольку бесщелевое состояние в этих веществах индуцировано дефектами, они получили название квазибесщелевых полупроводников (КБП) [5,6].

В данном кратком сообщении приведены исследования некоторых электрофизических свойств кристаллов СЛКП *p*-InAs с $N_{\rm ext} \simeq 10^{16} \,{\rm cm^{-3}}$ при всестороннем давлении (рис. 1–3, таблица).

Методика эксперимента, процедура вычисления эффективных характеристических параметров носителей заряда — подвижностей μ_c , μ_A , μ_v и концентраций *n*, p_A , p_v (здесь и далее индексы "*c*", "*A*", "*v*" относятся к зонам проводимости, акцепторной и валентной) и модельные представления применительно к *p*-CdSnAs₂(Cu) подробно изложены в работах [1–6]. Ввиду подобия кинетических свойств и единой природы рассматриваемых явлений в дырочных CdSnAs₂(Cu) и InAs далее приводится их краткое обсуждение.

В образце 3 (см. таблицу) $N_{\text{ext}} \simeq N_A$, где N_A — концентрация глубоких акцепторных центров. Специфичность

ситуации и целесообразность проведения сопоставления с данными для образца 10 p-CdSnAs₂(Cu) с аналогичными характеристиками (см. работу [5]) явились причиной акцентирования нашего внимания на кинетических свойствах именно этого образца.

При расчетах использованы известные сведения о законе дисперсии, величинах эффективной массы электронов на дне зоны проводимости m_c/m_0 , ширины запрещенной зоны ε_g и спин-орбитального расщепления валентных зон Δ_s [8,9,12]. Ранее считалось, что величина Δ_s и эффективная масса дырок по плотности состояний m_p/m_0 не зависят от давления *P*. Уширением глубокого акцепторного уровня при 300 К пренебрегалось [2]. При 300 К, в отличие от T = 77.6 К, зависимость n(P) носит экспоненциальный характер. Поэтому применение закона дисперсии для идеального полупроводника в полупроводнике с флуктуирующим потенциалом, каким является СЛКП *p*-InAs, корректно (см. [1,2,4,5]). Из результатов количественного анализа при 300 К следует:

$$m_c/m_0 = 0.022 + 4.34 \cdot 10^{-3}P,$$

$$\varepsilon_g = (0.36 + 9 \cdot 10^{-2}P) \,\mathfrak{sB},$$
 (1)

$$\varepsilon_A = (-0.13 - 9 \cdot 10^{-2}P) \,\mathfrak{sB}.$$

Здесь давление P — в единицах ГПа, ε_A — энергия глубокого акцепторного уровня (энергия отсчитывается вверх от невозмущенного края зоны проводимости).

<i>Т</i> ,К	Образец № 3									Образец № 4		
	<i>Р</i> ,ГПа	<i>R</i> ₀ , см ³ /Кл	ρ , Ом · см	$p_A, \ 10^{16} \ \mathrm{cm}^{-3}$	$\mu_A, \mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$	p_A/n	p_v/n	μ_c/μ_A	μ_c/μ_v	<i>Р</i> , ГПа	<i>R</i> ₀ , см ³ /Кл	$\rho, \mathrm{Om} \cdot \mathrm{cm}$
300	$\begin{array}{c} 10^{-4} \\ 1.46 \\ \infty \end{array}$	-4000 520 931	1.67 3.76 5.81	1.84 1.84 1.84	95.5 41.0 10.2	$\begin{array}{c} 1.4\cdot 10^2\\ 1.4\cdot 10^4\\ \infty\end{array}$	35.3 3500 ∞	88.4 186 0	44.0 33 0	10 ⁻⁴ 1.5	-1800 135	1.53 3.76
77.6	$\begin{array}{c} 10^{-4} \\ 1.1 \\ \infty \end{array}$	-3450 -1560 36000	9.09 25 200	2.26 2.26 2.26	25.3 9.03 0	915 2570 ∞	7 19.8 ∞	133 179	18.7 9.0 0	10^{-4} 1.17	-3340 -6432	4.92 45.64

Параметры образцов

Рис. 1. Зависимости коэффициента Холла в предельно слабом магнитном поле R_0 (1, 4), удельного сопротивления ρ (2, 5), подвижности дырок акцепторной зоны μ_A (3, 6) и ширины запрещенной зоны ε_g (7) при T = 77.6 (1–3) и 300 K(4–7) от давления P в образце 3. Экспериментальные данные (значки и сплошные линии) получены при подъеме давления, штриховые линии — экстраполяция.

Рис. 2. Магнитополевые зависимости коэффициента Холла R в образце 3 при T = 77.6 (*1*, 2) и 300 K (3–5) при давлениях P, (ГПа): I = 0.4, 2 = 1.1, $3 = 10^{-4}$, 4 = 1.06, 5 = 1.4. Значки — эксперимент, сплошные линии — теория.

Физика и техника полупроводников, 1999, том 33, № 1

Рис. 3. Электрополевые зависимости нормализованной к атмосферному давлению удельной электропроводности σ/σ_0 (1-4) и коэффициента Холла *R* (5, 6) при T = 77.6 К (1-3, 5, 6) и 300 К (4) в образце 4. Давление *P*, ГПа: 1, 5, 6 — 1.05; 2 — 0.67; 3 — 0.03; 4 — 1.42. Магнитное поле *H*, кЭ: 5 — 2, 6 — 15.

В образце 3 коэффициент заселенности акцепторной зоны $K_A = (N_A - p_A)/N_A$ убывает от 0.19 до 0 с убыванием *T* от 300 до 77.6 K, а энергия Ферми изменяется как

$$\varepsilon_F = (-0.17 - 9 \cdot 10^{-2} P) \, \text{sB.}$$
 (2)

Таким образом в процессах переноса наряду с дырками валентной зоны принимают участие носители заряда глубокой акцепторной зоны. Положение уровня Ферми фиксировано относительно потолка валентной зоны статистикой дырок, так как $n \ll p_A, p_v$ и энергетический промежуток между валентной и акцепторными зонами не зависит от давления. Полученные значения $d\varepsilon_g/dP$ и $m_p/m_0 = 0.44$ согласуются с известными данными [9,12].

С понижением температуры случайные колебания потенциала возрастают и ниже 100 К достигают значений порядка расстояния от невозмущенного края зоны проводимости до уровня Ферми, "вмороженного" в акцепторную зону, т.е. формируется состояние типа сильно легированного полностью компенсированного полупроводника (СЛПКП) [4–6]. Концентрация электронов в этом случае при $T \rightarrow 0$ стремится к конечной величине. Кроме того, различие в динамике локализации электронов зоны проводимости и дырок акцепторной зоны, наблюдаемое, например, в аналогичной ситуации в *p*-CdSnAs₂(Cu) [1,4–6], обусловливает заметный рост отношения μ_c/μ_A с убыванием температуры.

Итак, формирование состояния типа СЛПКП в квазибесщелевом полупроводнике естественно объясняет отрицательный знак R и аномальный характер зависимости R(T) при низких температурах (рис. 3) [8,9]. Подчеркнем, что точка зрения на природу необычной зависимости R(T) и R < 0 при низких температурах в *p*-InAs, объясняющая эти явления образованием вырожденного поверхностного слоя *п*-типа с объемной концентрацией электронов порядка 10¹⁸ см⁻³ [7–9], противоречит барическим зависимостям кинетических коэффициентов (рис. 1–3). Действительно, в этом случае инверсионный слой, обволакивая, согласно [8], всю поверхность образца, должен полностью шунтировать его объем, коэффициент Холла не должен зависеть от давления, а сопротивление ρ должно слабо (не более 50% на 1 ГПа) возрастать. В заключение отметим актуальность предлагаемых модельных представлений, поскольку игнорирование влияния случайного потенциала, приводящего к формированию состояния типа СЛПКП в квазищелевом полупроводнике при обсуждении результатов эксперимента типично [7,11,13].

Авторы признательны Российскому фонду фундаментальных исследований за поддержку (проект 97-02-16545).

Список литературы

- М.И. Даунов, А.Б. Магомедов, В.И. Данилов. ФТП, 25, 467 (1991).
- [2] М.И. Даунов, А.Б. Магомедов, В.И. Данилов. УФЖ, 37, 103 (1992).
- [3] М.И. Даунов, К.М. Алиев, В.И. Данилов. УФЖ, 38, 1811 (1993).
- [4] И.К. Камилов, М.И. Даунов, В.А. Елизаров, А.Б. Магомедов. ЖЭТФ, 104, 2436 (1993).
- [5] М.И. Даунов, И.К. Камилов, А.Б. Магомедов. ЖЭТФ, 111, 562 (1997).
- [6] М.И. Даунов, И.К. Камилов, В.А. Елизаров, А.Б. Магомедов, В.И. Данилов. Докл. РАН, 357, 612 (1997); Тез. докл III Всеросс. конф. по физике полупроводников, 227 (1997).
- [7] I.M. Tsidilkovski, G.I. Harus, N.G. Shelushinina. Adv. Phys., 34, 43 (1985).
- [8] В.В. Воронков, Е.В. Соловьева, М.И. Иглицин, М.Н. Пивоваров. ФТП, 2, 1800 (1968).
- [9] О. Маделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967).
- [10] В.В. Попов, М.Л. Шубников, С.С. Шалыт, В.В. Косарев. ФТП, **11**, 1914 (1977).
- [11] В.В. Косарев, Р.Р. Парфеньев, В.В. Попов, С.С. Шалыт. ФТТ, **18**, 489 (1976).
- [12] А. Плиткас, А. Крокус, Л.А. Балагуров, Э.М. Омельяновский. ФТП, **14**, 2123 (1980).
- [13] С.Г. Гасанзаде, Е.А. Сальков, Г.А. Шепельский. ФТП, 31, 35 (1997).

Редактор Т.А. Полянская

Quasi-gapless semiconductor *p*-InAs

M.I. Danilov, I.K. Kamilov, A.B. Magomedov, A.Sh. Kirakosjan

Institute of Physics of Daghestan Science Center, Russian Academy of Sciences, 367003 Makhachkala, Russia

Abstract We use data on the pressure up to P = 1.5 GPa and field dependences up to H = 12 kOe and E = 25 V/cm of the Hall coefficient and the resistivity at 77.6 K and 300 K in *p*-InAs with the excess-acceptor densities $N_{\text{ext}} = N_A - N_D \approx 10^{16}$ cm⁻³ and $N_A/N_D \approx 0.9$ to calculate the effective characteristics of charge carriers. It is shown that at the tail of the density of states, the conduction band has a deep acceptor band. A modification of the model of a heavily-doped, completely compensated semiconductor is realized in *p*-InAs at low temperature.

E-mail: kamilov@sinol.ru