Тепловое расширение зонных магнетиков $Sc_xTi_{1-x}Fe_2$

© Н.И. Коуров, А.Г. Волков*, В.А. Казанцев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Уральский государственный технический университет, 620002 Екатеринбург, Россия

E-mail: lowtemp@ifm.e-burg.su

(Поступила в Редакцию 18 марта 1999 г.)

В интервале температур 5–1200 К при переходе от антиферромагнетика TiFe₂ ($T_N = 270$ К) к ферромагнетику ScFe₂ ($T_C = 540$ К) исследован коэффициент теплового расширения (КТР) зонных магнетиков Sc_xTi_{1-x}Fe₂. Обнаружен отрицательный по знаку магнитный вклад в КТР $\alpha_m(T)$, который связывается с эффектами индуцирования локальных магнитных моментов спиновыми флуктуациями как в магнитоупорядоченном, так и в парамагнитном состояниях. Показано, что особенности поведения $\alpha_m(T)$ обусловлены видом кривой плотности состояний вблизи уровня Ферми.

Интерметаллические соединения Sc_xTi_{1-x}Fe₂ образуют непрерывный ряд квазибинарных твердых растворов, упорядоченных в гексагональной структуре типа C14 (P6₃/mmc). В элементарной ячейке такой структуры выделены три позиции: 2(a) - c симметрией $\bar{3}m$, 6(h) - c симметрией mm2 и 4(f) - c симметрией 3mm. Первые две позиции занимают атомы железа. Согласно [1,2], в соединении ScFe₂ эти два сорта атомов железа обладают одинаковыми моментами, которые при $T < T_C = 540$ К упорядочены ферромагнитно (F). И наоборот, в TiFe₂ атомы железа имеют локальные моменты только в позиции $6h(\mu_{Fe2})$, а в позиции 2a моменты $\mu_{Fe1} = 0$. Причем в соединении TiFe₂ локальные моменты μ_{Fe2} упорядочены антиферромагнитно (A) при $T < T_N \approx 270$ К.

Из результатов измерений парамагнитной восприимчивости следует [3], что усредненный на атом железа момент для сплавов $Sc_xTi_{1-x}Fe_2$ во всей области концентраций *x* изменяется в интервале значений $\mu_{Fe} = (1.5-2.5)\mu_B$. В то же время измеренный при T = 4.2 K спонтанный момент на атом железа $\mu_{Fe}^S = (0.2-0.6)\mu_B$ [1–3]. Такое отличие локальных моментов на атоме железа в магнитоупорядоченном и в парамагнитном состояниях позволяет рассматривать сплавы $Sc_xTi_{1-x}Fe_2$ как зонные магнетики.

При увеличении концентрации x немагнитные атомы скандия случайным образом замещают атомы титана в позициях 4f. Этот процесс сопровождается концентрационным фазовым переходом F-A. Для исследованных сплавов состава $Sc_xTi_{1-x}Fe_{1.97}^{-1}$ переход от A-к F-упорядоченным образцам протекает в основном в интервале концентраций 0.05 < x < 0.15. В сплавах переходной области концентраций при температурах ниже некоторой T_f одновременно присутствуют F- и A-типы дальнего порядка, что нередко рассматривается как признак существования "скошенной" магнитной структуры.

Согласно мессбауэровским исследованиям [2], именно в этой области концентраций происходит изменение момента на атомах железа в позиции 2a и наблюдается аномальное поведение параметров кристаллической решетки в зависимости от x [3]. В сплавах переходной области концентраций существует также значительный гистерезис на температурных зависимостях параметров решетки вблизи $T_f < [T_C, T_N]$, где реализуется переход из "скошенной" магнитной структуры к коллинеарным F- или A-типам упорядочения моментов.

Для дальнейшего выяснения особенностей магнитного и структурного состояний зонных магнетиков $Sc_xTi_{1-x}Fe_2$ представляет интерес изучение коэффициента теплового расширения α . При этом наибольшее значение представляют три аспекта проблемы: исследование характера изменения магнитной составляющей КТР $\alpha_m(T)$ в области концентрационного фазового перехода F-A; определение поведения коэффициента $\alpha_m(T)$ вблизи температур Кюри и Нееля, а также при $T \leq T_f$ для сплавов переходной области концентраций; выяснение роли спиновых флуктуаций в формировании зависимости $\alpha(T)$ как в магнитоупорядоченном, так и парамагнитном состояниях.

В работе исследованы сплавы $Sc_rTi_{1-r}Fe_2$ (x = 0, 0.1, 0.4, 0.6 и 1), изготовленные в электродуговой печи, заполненной чистым аргоном по методике, описанной в [1,2]. С целью гомогенизации слитки весом ~ 30 г переплавлялись с переворачиванием несколько раз. Затем эти слитки отжигались в атмосфере очищенного гелия при T ~ 1000°C более 72h с последующим охлаждением в течение суток до комнатной температуры. Рентгеноструктурные исследования подтвердили наличие в рассматриваемых сплавах структуры С14. Для измерения коэффициента $\alpha(T)$ использовались образцы размером (6-6-15) mm. Измерения КТР в интервале температур 5-300 К осуществлялись на емкостном дилатометре в равновесном режиме с погрешностью не более $1.5 \cdot 10^{-7} \,\mathrm{K}^{-1}$, а в диапазоне $300-1200 \,\mathrm{K}$ — на дилатометре фирмы "ULVAK-RIKO" (Япония) в динамическом режиме со скоростью 5 К / min с погрешностью

¹ Отклонение от стехиометрического состава Sc_xTi_{1-x}Fe₂ необходимо для упорядочения сплавов в гексагональной структуре C14. Иначе сплавы исследуемой системы упорядочиваются предпочтительно в кубическую структуру типа C15 (см., например, [1-3] и литературу в них).

Рис. 1. Температурные зависимости коэффициента теплового расширения $\alpha(T)$ в зонных магнетиках Sc_xTi_{1-x}Fe₂. *х*: I - 0, 2 - 0.1, 3 - 0.4, 4 - 0.6, 5 - 1. Сплошная линия показывает вклад Дебая–Грюнайзена в $\alpha(T)$ для одного из исследованных сплавов. Пунктиром показаны точки магнитного упорядочения T_C , T_N и T_f .

не более $5 \cdot 10^{-7} \, \mathrm{K}^{-1}$. Необходимые для обсуждения результаты измерений магнитных свойств приведены в [1–3].

Экспериментально определенные температурные зависимости КТР для исследованных сплавов Sc_xTi_{1-x}Fe₂ показаны на рис. 1. При учете фазовой диаграммы магнитного состояния рассматриваемых зонных магнетиков видно [3], что для всех *F*-сплавов с x = 0.4, 0.6,1 вблизи Т_С, а также для А-сплава с x = 0 вблизи T_N на кривых $\alpha(T)$ наблюдаются аномалии, которые естественно связать с появлением отрицательного по знаку магнитного вклада в КТР. Причем для сплава переходной области концентраций с x = 0.1 наличие отрицательной составляющей в коэффициенте $\alpha(T)$ приводит даже к смене знака, измеренного на эксперименте КТР при $T < T_f < T_C$. Кроме того, из рис. 1 следует, что при $T > [T_C, T_N]$ практически для всех исследованных образцов поведение кривых $\alpha(T)$ значительно отличается от ожидаемого в парамагнитной области температур.

Известно [4], что в общем случае зависимость $\alpha(T)$ для магнетиков можно представить как сумму магнитного $\alpha_m(T)$, решеточного $\alpha_L(T)$ и электронного $\alpha_e(T)$ вкладов

где

0

$$\alpha(T) = \alpha_m(T) + \alpha_L(T) + \alpha_e(T). \tag{1}$$

При этом электронный вклад $\alpha_e(T)$ из-за его малости по сравнению с другими составляющими имеет смысл учитывать только при низких температурах ($T \ll \Theta_D$, где Θ_D — температура Дебая).

Магнитную составляющую КТР обычно считают пропорциональной квадрату спонтанной намагниченности $M_S(T)$ (см., например, [4,5] и литературу в них). Она имеет отрицательный знак и в точке Кюри или Нееля достигает своего максимального значения $\alpha_m(T_C, T_N) \approx -M_S^2(0)$, где $M_S(0)$ — спонтанная намагниченность при T = 0 К. В парамагнитной области температур $\alpha_m(T)$ должна отсутствовать.

Температурная зависимость немагнитного $\alpha_L(T)$ вклада, как правило, определяется функцией Дебая– Грюнайзена при известных значениях температуры Дебая Θ_D и величины $\alpha_L(T)$ значительно выше Θ_D [4]. Согласно результатам измерений низкотемпературной теплоемкости $C_p(T)$ [6], в рассматриваемых сплавах $\Theta_D \sim 280$ К. Следовательно, в парамагнитной области температур (для сплавов Sc_xTi_{1-x}Fe₂ при $T > [T_C, T_N u \Theta_D]$) должен наблюдаться выход зависимости $\alpha(T)$ в насыщение, как это видно из рис. 1, где сплошной линией показан вклад типа Дебая–Грюнайзена для образца с x = 0.4.

Из экспериментальных данных, приведенных на рис. 1, видно также, что в исследованных сплавах выше T_C и T_N и соответственно Θ_D сначала действительно происходит резкое ослабление температурной зависимости КТР. Однако мы не обнаружили выхода $\alpha(T)$ на насыщение вплоть до самых высоких температур исследованного интервала. Последнее обстоятельство указывает на неполный учет соотношением (1) всех механизмов, ответственных за формирование температурной зависимости КТР сплавов Sc_xTi_{1-x}Fe₂. В частности, существенное влияние на температурное изменение коэффициента теплового раширения зонных магнетиков должны оказывать спиновые флуктуации [5,7,8].

Согласно [8], наряду с одноэлектронным, решеточным и магнитным вкладами в $\alpha(T)$ должна присутствовать и спин-флуктуационная составляющая

$$\alpha_{sf} = \alpha_{sf}^{(1)} + \alpha_{sf}^{(2)} + \alpha_{sf}^{(3)}, \tag{2}$$

$$\mu_{sf}^{(1)} = \frac{5}{3V\varkappa} U^2 \tilde{g}(\mu) \frac{d\langle m^2 \rangle}{dT},$$
 (2a)

$$\alpha_{sf}^{(2)} = -\frac{5}{V\varkappa} U\langle m^2 \rangle \frac{dD^{-1}}{dT},$$
(26)

$$\alpha_{sf}^{(3)} = -\frac{20}{9V\varkappa} UD^{-1} \langle m^2 \rangle / T, \qquad (2B)$$

где U — параметр внутриатомного кулоновского отталкивания, V — объем, \varkappa — константа изотермического сжатия, Т — температура в энергетических единицах

$$D^{-1} = \begin{cases} \gamma M_{q0}^2, & \text{при } T < [T_C, T_N] \\ -\frac{2}{3}n_{ef}/m - \frac{1}{3}U\tilde{g}(\mu) + X(q_0, 0), \\ & \text{при } T > [T_C, T_N] \end{cases} - (3)$$

знаменатель динамической восприимчивости при значении волнового вектора, равном вектору магнитной сверхрешетки q_0 ($D^{-1} = D^{-1}(q_0, 0)$), M_{q0} — намагниченность при соответствующем волновом векторе, $\langle m^2 \rangle$ — квадрат амплитуды спиновых флуктуаций, определяемый флуктуационно-диссипативной теоремой (когда $D^{-1} > a - \langle m^2 \rangle = (bT)^2 D (D^{-1} + a)^{-1}$ [8], а в противном случае, т.е. при $T \approx [T_C, T_N]$, — $\langle m^2 \rangle \sim (T/T_0)^{4/3}$ [5]), a и b — параметры q- и ω -зависимости паулиевской восприимчивости $\chi_0(q, \omega)$ (см., например, [5]), μ — химический потенциал

$$m^2 = M_{q0}^2 + \langle m^2 \rangle,$$

 $X(q,\omega) = D^{-1}(q,\omega) - D^{-1}(0,0) \approx aq^2 - ib\omega/q,$
 $n_{ef} = \sum_{\alpha=\pm 1} \alpha \int d\varepsilon g_0(\varepsilon) f(\varepsilon - \mu - \alpha Um)/2,$
 $\tilde{g}(\mu) = 2 \prod_{\alpha=\pm 1} g_0(\mu + \alpha Um) / \sum_{\alpha=\pm 1} g_0(\mu + \alpha Um),$
 $\gamma = (n_{ef}/m - U\tilde{g}(\mu))/m^2$

— константа спин-волновой жесткости.

Из выражений (2а)–(2в) следует, что при $D^{-1} \ll 1$ (т. е., прежде всего, вблизи температуры магнитного превращения) слагаемое $\alpha_{sf}^{(3)}$ в (2) пренебрежимо мало по сравнению с двумя другими. Поэтому обратимся далее к анализу составляющих $\alpha_{sf}^{(1)}$ и $\alpha_{sf}^{(2)}$ спин-флуктуационного вклада в КТР.

Первое слагаемое в (2) положительно и при $T > [T_C, T_N]$ линейно по температуре $(d\langle m^2 \rangle/dT \approx b^2 T D (D^{-1} + a)^{-1})$, как и обычный одноэлектронный вклад. Однако этот член значительно превосходит α_e по величине, поскольку он прямо пропорционален восприимчивости ($D = 1 + U\chi \approx U\chi$). Тем самым необычно сильное температурное изменение КТР Sc_xTi_{1-x}Fe₂ при $T > [T_C, T_N \, u \, \Theta_D]$ может быть объяснено присутствием в исследованной нами зависимости $\alpha(T)$ спин-флуктуационного вклада (в частности, $\alpha_{sf}^{(1)}$).

Согласно экспериментальным данным, приведенным на рис. 1, в районе температуры $T^* \ge 700$ К практически для всех исследованных сплавов на кривых $\alpha(T)$ наблюдается "провал", который невозможно понять при учете только обычных электронной и ангармонической составляющих [4]. Именно в этой области температур в [3,9] обнаружены особенности на температурных зависимостях магнитной восприимчивости $\chi(T)$ и электросопротивления $\rho(T)$, которые можно связать с эффектом температурного индуцирования локализованных магнитных моментов (ЛММ) в зонных магнетиках.

Рис. 2. Температурные зависимости магнитофлуктуационной составляющей КТР $\alpha_{m,sf}(T)$ в зонных магнетиках Sc_xTi_{1-x}Fe₂. Номера кривых те же, что на рис. 1. Пунктиром показаны точки магнитного упорядочения T_C , T_N и T_f .

Подобная корреляция также находит свое объяснение в рамках подхода [7,8]. Поскольку слагаемое $\alpha_{sf}^{(2)}$ пропорционально производной от обратной восприимчивости по температуре, то излом на зависимости $\chi^{-1}(T)$ (с уменьшением наклона) должен привести к появлению провала на политерме $\alpha(T)$ (при той же температуре).

Следовательно, отклонение от поведения температурной зависимости КТР типа Дебая–Грюнайзена, существующее в сплавах $Sc_xTi_{1-x}Fe_2$ практически по всей области исследованных температур, естественно связать не столько с обычным магнитным, сколько с рассмотренными выше спин-флуктуационными вкладами.

На рис. 2 приведен суммарный магнитофлуктуационный вклад в КТР зонных магнетиков $Sc_xTi_{1-x}Fe_2$, найденный по результатам измерения $\alpha(T)$ и расчетов $\alpha_L(T)$ по функции Дебая–Грюнайзена при значениях Θ_D , установленных в [6], и наших данных по КТР при $T \sim 1000$ К ($T \gg T_C, T_N$ и Θ_D)². При этом считается, что в исследованной области температур од-

² Температура 1000 К выбрана в качестве граничной, так как, согласно фазовой диаграмме состояний системы Sc–Fe [10] и результатам исследования магнитных и электрических свойств [3,9], при более высоких температурах происходит изменение структурного состояния сплавов Sc_xTi_{1-x}Fe₂. Как видно из рис. 1, переход в новое структурное состояние при T > 1000 К приводит к резкому увеличению КТР.

ноэлектронный вклад $\alpha_e(T)$ пренебрежимо мал в сравнении с решеточным $\alpha_L(T)$ и магнитофлуктуационным $\alpha_{m,sf}(T) = \alpha_m(T) + \alpha_{sf}(T)$. Видно, что составляющая $\alpha_{m,sf}(T)$, определенная из эксперимента указанным выше способом, имеет отрицательный знак и сильную температурную зависимость практически во всем изученном нами интервале температур (ниже 1000 K).

На кривых $\alpha_{m,sf}(T)$, кроме рассмотренной выше особенности в парамагнитной области температур, наблюдается и вторая аномалия — вблизи температуры магнитного разупорядочения. Последняя в случае TiFe₂ носит четко выраженный λ -характер. Однако по мере увеличения содержания Sc при переходе к *F*-сплавам она размывается и уменьшается по глубине. При этом следует отметить, что по результатам измерений теплоемкости для TiFe₂ на кривой $C_p(T)$ в точке Нееля имеет место лишь незначительный "скачок" [6].

Причина такого поведения КТР вблизи температур Кюри и Нееля может быть объяснена концентрационной и температурной зависимостями $\alpha_{sf}^{(2)}$ -слагаемого спинфлуктуационного вклада, так как, согласно (2б) и (3) (см. также [7,8]), в магнитоупорядоченной области

$$\alpha_{sf}^{(2)} = -\frac{5}{3V\varkappa}\gamma U\langle m^2\rangle dM_{q0}^2/dT$$

и имеет особенность типа *λ*-аномалии. Однако знак этой составляющей КТР определяется тонкой структурой плотности состояний. В случае TiFe2 энергия Ферми расположена в области локального минимума $g_0(\varepsilon)$ [11] и $Um\tilde{g}(\mu) > n_{ef}$, поэтому константа спиновой жесткости γ отрицательна³. Вследствие этого λ -аномалии $\alpha_m(T)$ и $\alpha_{sf}^{(2)}$ имеют одинаковый отрицательный знак (так как $dM_{a0}^2/dT < 0$) и в сумме усиливают друг друга. В то же время для ScFe2, энергия Ферми которого располагается вблизи вершины локального максимума $g_0(\varepsilon)$ [12], $\gamma > 0$. В результате λ -особенности $\alpha_{sf}^{(2)}(T) > 0$, а $\alpha_m(T) < 0$, т.е. они имеют разные знаки и при суммировании в $\alpha_{m,sf}(T)$ ослабляют друг друга. Это ведет к размытию и уменьшению глубины минимума $\alpha_{m,sf}(T)$ вблизи температуры магнитного упорядочения с увеличением концентрации Sc. В то же время положительность константы спиновой жесткости указывает на относительную малость $\tilde{g}(\mu)$, а следовательно, и на относительно малую величину вклада $\alpha_{sf}^{(1)}(T)$. Поэтому значения суммы $\alpha_m(T) + \alpha_{sf}^{(2)}(T)$ (несмотря на стремление этих слагаемых к взаимной компенсации) остается заметным на фоне $\alpha_{sf}^{(1)}(T)$.

Отметим также и другие особенности тепловых свойств, связанные со спин-флуктуационной составляющей. Прежде всего, укажем на отсутствие в теплоемкости вкладов, соответствующих членам $\alpha_m(T)$, $\alpha_{sf}^{(1)}(T)$ и $\alpha_{sf}^{(3)}(T)$ в КТР [13]. Вместо них в $C_p(T)$ наряду с вкладом, аналогичным $\alpha_{sf}^{(2)}(T)$, фигурирует парамагнонная составляющая, которая положительна во всей области температур и возрастает с увеличением Т [13]. При этом следует иметь в виду, что парамагнонная составляющая $C_p(T)$ слабо зависит от положения химического потенциала и значения плотности состояний при $\varepsilon = \mu$. Вследствие чего парамагнонный вклад в теплоемкость должен быть практически одинаков при любых концентрациях Sc. Учитывая этот факт и то, что парамагнонная составляющая пропорциональна логарифму восприимчивости, следует ожидать, что значения вклада в теплоемкость, аналогичного $\alpha_{sf}^{(2)}$, малы и лежат в пределах погрешности эксперимента. Поэтому магнитофлуктуационные составляющие $C_p(T)$ и $\alpha_{m,sf}(T)$ ведут себя по-разному. В частности, величина скачка на зависимостях $C_{n}(T)$ и $\alpha_{m,sf}(T)$ при магнитном разупорядочении слабых зонных магнетиков может отличаться в несколько раз, что мы и наблюдаем в сплавах $Sc_xTi_{1-x}Fe_2$.

Кроме этого, подчеркнем, что составляющая $\alpha_{sf}^{(3)}(T)$ отрицательна во всем интервале температур. Несмотря на то что это слагаемое обращается в нуль при магнитном переходе, оно становится заметным как справа, так и слева от него. Это ведет к дополнительному искажению λ -аномалии. В условиях малой глубины λ -аномалии учет слагаемого $\alpha_{sf}^{(3)}(T)$ приводит к смещению температуры минимума $\alpha_{m,sf}(T)$ влево от T_C или T_N , а также создает условия для отрицательности $\alpha_{m,sf}(T)$ в парамагнитной области температур.

Другой причиной отрицательных значений $\alpha_{m,sf}(T)$ при $T > T_C$ или T_N может являться эффект насыщения ЛММ, который наблюдается при увеличении температуры. Поскольку вблизи и выше температуры насыщения ЛММ ($\tilde{g} = 0$) коэффициент спиновой жесткости должен быть положительным [5] (в то же время для парамагнитной области $dD^{-1}/dT \approx \gamma d \langle m^2 \rangle/dT$, а производная $d\langle m^2 \rangle/dT$ всегда больше нуля), постольку для всех сплавов при $T > [T_C, T_N]$ вблизи или выше температуры насыщения ЛММ имеем $\alpha_{sf}^{(2)} < 0$. Последнее в совокупности с отрицательностью $\alpha^{(3)}_{sf}(T)$ для любых значений T и обращением в нуль $\alpha_{sf}^{(1)}(T)$ при насыщении ЛММ обусловливает сохранение отрицательного знака магнитофлуктуационного вклада вплоть до самых высоких температур. Следовательно, можно заключить, что экспериментально установленные зависимости $\alpha_{m,sf}(T)$ для сплавов Sc_xTi_{1-x}Fe₂ с $x \neq 0.1$ (т.е. находящихся за пределами переходной области концентраций) согласуются с выводами спин-флуктуационной теории [5,7,8,13].

Особый интерес представляют исследования КТР в магнитоупорядоченном состоянии для сплава переходной области концентраций с x = 0.1, в котором (согласно фазовой диаграмме магнитного состояния [3]) при $T < T_f \sim 170$ К происходит переход к "скошенной" магнитной структуре. Из результатов измерений теплового расширения сплава с x = 0.1, показанных на рис. 1 и 2, а также магнитных свойств, приведенных в [3], видно, что в рассматриваемом образце значительное

 $^{^3}$ Отметим, что при $Um \ll \mu$ константа $\gamma \approx (g'(\mu))^2/g(\mu) - g''(\mu)/3.$

изменение магнитного момента и коэффициента $\alpha_{m,sf}(T)$ происходит во всей исследованной области температур.

Сравнивая эти данные с результатами измерений намагниченности M(T), полученными в [2], и с фазовой диаграммой магнитного состояния рассматриваемой системы сплавов [3], при учете зонной природы магнетизма можно сделать вывод, что в сплаве с x = 0.1 при $T \le T_f$ происхолит аномально сильное изменение величины ЛММ. Именно в этой области температур наблюдается минимум на кривой $\alpha_{m,sf}(T)$. С учетом выражения (2) заключаем, что низкотемпературную аномалию $\alpha_{m.sf}(T)$ в сплаве переходной области концентраций с *x* = 0.1 также можно связать с эффектами индуцирования ЛММ, однако не только тепловыми, но и концентрационными спиновыми флуктуациями. При этом теоретический подход, позволяющий описывать большие концентрационные флуктуации спиновой плотности, в настоящее время отсутствует. Поэтому подробный анализ особенностей $\alpha_{m,sf}(T)$ при x = 0.1 в рамках спин-флуктуационного подхода сейчас невозможен.

В то же время подробного вида низкотемпературная (при $T < \Theta_D$) аномалия $\alpha(T)$, приводящая к изменению знака КТР, известна и для других немагнитных материалов (см., например, [4]), где она связывается с особенностями фононного спектра. В исследованном нами сплаве Sc₀ 1 Ti₀ 9 Fe₁ 97 можно ожидать значительное отклонение фононного спектра от дебаевского. Об этом свидетельствует, в частности, аномальное изменение параметров решетки, обнаруженное в [1,2] при $T \leq T_f$ для сплавов промежуточной области концентраций. Согласно [1,2], данные сплавы являются неустойчивыми в структурном и магнитном отношениях. В свою очередь это предполагает размягчение фононного спектра, т.е. появление провалов на кривой плотности состояний дебаевского вида. В таких условиях экспериментально полученную зависимость $\alpha(T)$ для сплава с x = 0.1, по-видимому, можно описать, имея точный вид фононного спектра или используя модельные приближения, например двухминимумного потенциала взаимодействия атомов в твердом теле. В последнем случае КТР может быть выражен в виде суммы двух вкладов: обычного дебаевского и полученного в модели Шоттки.

Таким образом, проведенные исследования теплового расширения зонных магнетиков $Sc_xTi_{1-x}Fe_2$ показывают, что независимо от их магнитного состояния в кристаллической решетке типа C14 для КТР определяющим является вклад, связанный с эффектами индуцирования ЛММ спиновыми флуктуациями. Наиболее сильное изменение составляющей $\alpha_{m,sf}(T)$, имеющей отрицательный знак, как и величины ЛММ, наблюдается вблизи характерных температур T_C , T_N , T_f и T^* . Очевидно, что для более точного теоретического описания магнитного вклада в температурные зависимости КТР, χ и M, обусловленного эффектами, связанными со спиновыми флуктуациями как в магнитоупорядоченном, так и в парамагнитном состояниях зонных магнетиков $Sc_xTi_{1-x}Fe_2$, требуется использовать точные сведения об их электронном и фононном спектрах. Результаты расчетов электронной зонной структуры для граничных F- (ScFe₂)- и A- (TiFe₂)-сплавов приведены в [11,12]. Фононный спектр сплавов Sc_xTi_{1-x}Fe₂ в настоящее время подробно не исследован.

Авторы благодарны С.М. Подгорных за измерения КТР сплава $Sc_{0.1}Ti_{0.9}Fe_{1.97}$ в области низких температур (T < 100 K).

Работа выполнена при частичной поддержке ФЦП "Интеграция" (проект № 88).

Список литературы

- Yoshikazu Nishihara, Yuji Yamaguchi. J. Phys. Soc. Japan 54, 3, 1122 (1985).
- [2] Yoshikazu Nishihara, Yuji Yamaguchi. J. Phys. Soc. Japan 55, 3, 920 (1986).
- [3] Н.И. Коуров, И.И. Пиратинская, Ю.Н. Циовкин. ФММ 78, 1, 69 (1994).
- [4] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974). 290 с.
- [5] Т. Мория. Спиновые флуктуации в магнетиках с коллективизированными электронами. Мир, М. (1988). 288 с.
- [6] Н.И. Коуров. ФММ **79**, *2*, 30 (1995).
- [7] А.Г. Волков, С.В. Кортов, А.А. Повзнер. ФНТ 22, 10, 1144 (1996).
- [8] П.В. Гельд, А.А. Повзнер, А.Г. Волков. ДАН СССР 333, 3, 321 (1993).
- [9] Н.И. Коуров, Ю.Н. Циовкин. ФММ 80, 3, 53 (1995).
- [10] Диаграммы состояния двойных и многокомпонентных систем на основе железа. Справочник / Под ред. О.А. Банных и М.Е. Дрица. Металлургия, М. (1986). 439 с.
- [11] S. Ishida, S. Asano, J. Ishida. J. Phys. Soc. Japan 54, 3925 (1985).
- [12] S. Ishida, S. Asano. J. Phys. Soc. Japan 54, 12, 4688 (1985).
- [13] А.А. Повзнер, А.Г. Волков. ФТТ 38, 2, 643 (1996).