Температурное поведение парамагнитных центров Gd³⁺ в CsSrCl₃

© В.А. Важенин, В.Б. Гусева, М.Ю. Артемов

Научно-исследовательский институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 4 марта 1999 г.)

В первой низкосимметричной фазе CsSrCl₃ измерено температурное поведение параметров порядка, аксиального параметра начального расщепления примесных комплексов Gd³⁺ и найдена связь между ними. Оценены параметры термодинамического потенциала, учитывающего взаимодействие параметра порядка с деформациями. Объяснен характер температурной зависимости аксиального параметра начального расщепления в кубической фазе.

1. Исследования [1–5] позволили интерпретировать температурное поведение CsSrCl₃ в окрестности 380 К как последовательность трех структурных превращений

$$O_{h}^{1} \xrightarrow{[00\psi]} D_{4h}^{5} \xrightarrow{0\varphi\psi} D_{2h}^{17} \xrightarrow{[\varphi_{2}\varphi_{1}\psi]} C_{2h}^{2}, \qquad (1)$$

где ψ и φ — компоненты ротационных мод M_3 и R_{25} соответственно. В работе [6] в результате проведения тепловых измерений и исследования температурной зависимости угла поворота хлорного октаэдра с использованием спектра ЭПР кубических центров Gd³⁺ (центров типа 1) определены параметры термодинамического потенциала для двух структурных переходов без учета взаимодействия параметров порядка друг с другом и с деформациями.

В работах [7–10] исследованы структуры двух тетрагональных (в кубической фазе) комплексов Gd³⁺ (тип 2 — ассоциация с вакансией ближайшего Sr²⁺, тип 3 — ион O²⁻ на месте ближайшего иона хлора) и связь их параметров с величинами углов поворота и деформацией хлорного октаэдра. В настоящей работе представлены результаты измерений температурных зависимостей угла поворота хлорного октаэдра и аксиального параметра b_{20} , связанного с деформацией октаэдра, на трех типах парамагнитных центров в первой низкотемпературной фазе (комплексы типа 2 в этой фазе порождают центры 2 || и 2 \perp [8]).

2. Измерения проводились на образцах, выращенных методом Бриджмена в запаянных кварцевых ампулах и имеющих почти монодоменную структуру, на спектрометре трехсантиметрового диапазона. Для получения $b_{20}(T)$ аналогично [11] при каждой температуре строилась комбинация резонансных положений двух переходов, исключающая вклад кубического параметра спинового гамильтониана b₄₀ (вклад b₆₀ и недиагональных параметров мал): при **В** $\parallel \psi$ для центра 1 (*B* — индукция магнитного поля), при **B** $\parallel OK \parallel \psi$ для центра $2 \parallel (OK$ ось компенсации) и при **В** $\parallel OK \perp \psi$ для центра $2 \perp$. Результаты приведены на рис. 1,2 и в табл. 1. За величину $\Delta b_{20}(T)$ на рис. 2 принимается $b_{20}(T, 1 \text{ phase})$ в низкосимметричной фазе за вычетом скачка b₂₀ и зависимости $b_{20}(T, \text{ cub})$, экстраполированной из кубической фазы.

Для измерения локального угла поворота октаэдра поляризующее магнитное поле поворачивалось от C_4 в плоскости $\perp \psi$ на угол φ_0 и определялось расстояние Δ между резонансными положениями ЭПР сигналов центров с противоположными знаками поворота хлорного октаэдра. Легко показать, что сдвиги угловой зависимости резонансного положения будут

$$\psi_a = 1/4 \arcsin(\Delta/(P^* \sin 4\varphi_0))$$
 для центров 1 и 2 ||, (2)

$$\psi_a = 1/2 \arcsin(\Delta/(P^* \sin 2\varphi_0))$$
для центра 2 \perp , (3)

где P — размах азимутальной $(1 \text{ и } 2 \parallel)$ или полярной $(2 \perp)$ угловой зависимости. Полученные результаты отражены на рис. 3 и в табл. 1 (там же приведены данные о углах поворота из [8–9],

Согласно [8], для центров 1 и 2 || угол ψ_a можно отождествлять с углом поворота (при фазовом переходе) главных осей тензора тонкой структуры парамагнитного центра 4-го ранга ψ_b и, следовательно, углом поворота хлорного октаэдра ψ , тогда как для центра 2 \perp это несправедливо. Анализ сдвига угловой зависимости центра 2 \perp при фазовом переходе показал, что основной вклад в него дает поворот осей тензора 2-го ранга, однако при количественных оценках пренебрегать влиянием тензора 4-го ранга будет ошибочно.

Представляет интерес вернуться к вопросу о сопоставлении углов поворота тензора 2-го ранга

$$\psi_b = 1/2 \operatorname{arctg}(b_{21}/b_{22} - 3b_{20}) \tag{4}$$

и углов поворота октаэдра для центра 2⊥ при 384 и 372 К [8] (табл. 1). Используя суперпозиционную

Таблица 1. Скачок b_{20} , сдвиг ψ_a угловых зависимостей ЭПР сигналов и углы поворота осей тензора тонкой структуры ранга r

Центр	Скачок b ₂₀ , MGz	Скачок ψ_a , degree	$\psi_b (384 \mathrm{K}).$ degree [8]	$\psi_b (372 \mathrm{K})$ degree [9]
1 2 2 ⊥	21 29 15	5.8 6.3 3.1	$\begin{array}{ccc} 6.1(3) & r=4 \\ 6.7(3) & r=4 \\ 3.0(3) & r=2 \end{array}$	$\begin{array}{ccc} 6.9(5) & r=4 \\ 7.5(4) & r=4 \\ 4.1(2) & r=2 \end{array}$
			2.5(7) r=4	5.4(6) r=4

модель [12] для октаэдра, искаженного из-за наличия иона Gd^{3+} и вакансии Sr^{2+} , а затем повернутого вокруг направления, перпендикулярного оси компенсации без дополнительных искажений, для угла поворота получим

$$\delta = 1/2 \arcsin[b_{21}/3b_{20}(oct)],$$
(5)

где $b_{20}(oct)$ в отличие от (4) — вклад в b_{20} только от лигандов вращающегося октаэдра без учета ионакомпенсатора. Малый параметр b_{22} в (5) отсутствует в связи с пренебрежением деформацией октаэдра при повороте.

Рис. 1. Температурное поведение параметра b_{20} центров типа $2 \parallel и 2 \perp$.

Рис. 2. Температурная зависимость модуля Δb_{20} трех $(1, 2 \parallel, 2 \perp)$ центров.

Рис. 3. Температурное поведение сдвига угловой зависимости резонансного положения центров типа $1, 2 \parallel u 2 \perp$ в первой низкосимметричной фазе.

По оценкам [7], доля b₂₀(oct) составляет приблизительно половину (по модулю) в наблюдаемой величине b20. Учет этой оценки в (5) приведет к возрастанию величины угла разворота октаэдра примерно в 2 раза по сравнению с данными [8,9] для тензора 2-го ранга (табл. 1). К сожалению, этот вывод не удается подтвердить поведением главных осей тензора 4-го ранга (табл. 1), слабо зависящего от деформации октаэдра, даже с учетом большой погрешности в определении параметров b_{4m} . Тем не менее можно заметить, что вывод [8] о столь сильном влиянии вакансии стронция, находящейся в плоскости вращения, на величину локального угла поворота преждевременен. Следует отметить, что выражение (5) в отличие от (4), полученного чисто феноменологически, является результатом модельных представлений.

Обращает на себя внимание закономерное отличие значений локального параметра порядка на центрах 1и $2 \parallel$ (рис. 3 и табл. 1). Качественно этот факт можно объяснить следующим образом. Поскольку локализация в соседнем октаэдре вакансии Sr²⁺ вызывает сжатие октаэдра (GdCl₆)³⁻ [7],¹ то при совпадении направлений *OK* и ψ фазовый переход в этой части кристалла будет происходить как бы в условиях одноосного сжатия, вызывающего, например в RbCaF₃ [11], сдвиг температуры перехода, т. е. можно ожидать, что структурный переход вблизи 2 || центра будет происходить при большей тем-

¹ Вывод [7] о сжатии октаэдра в результате сдвига иона Cl⁻ от вакансии стронция к Gd³⁺ можно подтвердить анализом данных табл. 2, 3. Локализация Li⁺ с малым ионным радиусом на месте вакансии Sr²⁺ должна привести к сдвигу хлора в направлении лития и, следовательно, к уменьшению его положительного вклада в b_{20} . В результате абсолютная величина b_{20} для литиевых центров оказывается больше, чем для центров 2 (табл. 2, 3).

Таблица 2. Параметры начального расщепления тетрагональных центров Gd³⁺, ассоциированных с ближайшей вакансией иона В, в кубической фазе

ABX ₃	Т, К	$b_{20}, 10^{-4} \mathrm{cm}^{-1}$	$\delta b_{20}/\delta T$, cm ⁻¹ /K	Ссылка
CsSrCl ₃	393	-206.8(10)	$-7\cdot 10^{-6}$	[7]
KCdF ₃	487	-249.3(10)	$-5\cdot10^{-6}$	[20,21]
RbCdF ₃	295	-291.3(5)	$-1.4\cdot10^{-6}$	[21]
CsCaF ₃	298	-314.3(3)	$-0.4\cdot 10^{-6}$	[21]
CsCdF ₃	291	-315.3(3)	$+1.4\cdot10^{-6}$	[21]

пературе и, по данным [8], вызывать дальнейшее сжатие октаэдра вдоль ψ .

Обычно предполагается, что b_{20} (Δb_{20} , если в кубической фазе $b_{20} \neq 0$) пропорциональна квадрату параметра порядка; правильнее эта связь будет

$$\Delta b_{20} = \chi \psi^2 + \xi \psi^4 + \zeta \psi^{6+} \dots$$

Обработка экспериментальных результатов приводит к следующим значениям: $\chi = 0.86 \text{ MGz/degree}^2$, $\xi = -0.01 \text{ MGz/degree}^4$, $\zeta = 0.0002 \text{ MGz/degree}^6$ для центра I и $\chi = 1.53 \text{ MGz/degree}^2$, $\xi = -0.03 \text{ MGz/degree}^4$, $\zeta = 0.003 \text{ MGz/degree}^6$ для центра $2 \parallel$. Пренебрежение членами с высокими степенями заметно перенормирует коэффициент $\chi(I) = 0.59 \text{ MGz/degree}^2$, $\chi(2 \parallel) = 0.71 \text{ MGz/degree}^2$, однако погрешность описания эксперимента вырастает всего в 2 раза.

3. Имея температурное поведение параметра порядка (рис. 3), можно оценить отношения параметров термодинамического потенциала

$$\Phi = \Phi_0 + A(T - T_c)\eta^2 + B\eta^4 + C\eta^4.$$
 (6)

Экспериментальная зависимость $\eta(T)$ кубического центра удовлетворительно описывается при следующих значениях параметров (6): $T_{\rm cr} - T_0 = 3.06 \, {\rm K}$, $A/B = -0.452 \cdot 10^{-18} \, {\rm cm}^2/{\rm K}^{-1}$, $B/C = -1.67 \cdot 10^{-17} \, {\rm cm}^2$, которые достаточно близки к параметрам, определенным в [6]. Однако полученная в этой процедуре $\eta_0 = 0.29 \cdot 10^{-8} \, {\rm cm}$, оказалась больше измеренной экспериментально (0.285 $\cdot 10^{-8} \, {\rm cm}$).

Согласно [2], учет упругой энергии кристалла и взаимодействия параметра порядка с деформациями приводит только к перенормировке константы *В* потенциала (6)

$$B' = B - 3/2 \frac{\alpha^2}{c_{11} + 2c_{12}} - 12 \frac{\beta^2}{c_{11} - c_{12}},$$
 (7)

где c_{11}, c_{12} — упругие модули, α, β — параметры взаимодействия η с деформациями. Попробуем оценить последнее слагаемое в (7). Подставив выражение для спонтанной тетрагональной деформации [2]

$$x_3 - 1/2(x_1 + x_2) = -6\beta \eta^2 / (c_{11} - c_{12})$$
 (8)

Физика твердого тела, 1999, том 41, вып. 11

в гамильтониан спин-деформационного взаимодействия [13]

$$H_{ss} = 1/2^* G_{11} O_{20} [x_3 - 1/2(x_1 + x_2)] = 1/3^* b_{20} O_{20}, \quad (9)$$

где x_i — компоненты тензора деформации, O_{20} — спиновый оператор Стивенса, G_{11} — компонента тензора 4-го ранга спин-деформационного взаимодействия, получим

$$\beta = -b_{20}(c_{11} - c_{12})/9G_{11}\eta^2.$$
(10)

Подставляя значения η и b_{20} для T = 384 К из [8], упругие константы для CsPbCl₃ из [2] и $G_{11} = G_{33} = 0.21 \text{ cm}^{-1}$ (Gd³⁺ в SrO) из [14], получим $\beta = -0.7 \cdot 10^{25} \text{ erg/cm}^5$, что дает вклад в B' за счет последнего слагаемого в (7), равный $0.4 \cdot 10^{40} \text{ erg/cm}^7$. Поскольку значение G_{11} для CaO, полученное в [14], в 2 раза меньше, чем для SrO, можно ожидать заметно большую добавку в B (в [6] $B = -1.85 \cdot 10^{40} \text{ erg/cm}^7$).

Поправки к *B* из-за взаимодействия η с деформациями можно оценить и не привлекая спин-деформационное взаимодействие, но используя в качестве компонент тензора деформации данные [2] о изменении параметров ячейки при фазовом переходе, выражение (8) и

$$\alpha = -(c_{11} + 2c_{12})(x_1 + x_2 + x_3)/3\eta^2$$

= -(c_{11} + 2c_{12})[(c + 2a)/a_0 - 3]/3\eta^2. (11)

Полученные из (11) и (8) $\alpha = 0.78 \cdot 10^{25} \text{ erg/cm}^5$ и $\beta = -1.4 \cdot 10^{25} \text{ erg/cm}^5$ приводят к $\Delta B(\alpha) =$ $0.015 \cdot 10^{40} \text{ erg/cm}^7$ и $\Delta B(\beta) = 1.57 \cdot 10^{40} \text{ erg/cm}^7$. Как видно, оба способа оценки дают величины поправок к *B*, сравнимые с экспериментально полученным значением, что может приводить при изменении условий наблюдений к изменению характера перехода.

4. Как следует из рис. 1, модуль аксиального параметра b₂₀ центра 2 в кубической фазе растет с увеличением температуры $(\delta b_{20}/\delta T \sim 7 \cdot 10^{-6} \, {\rm cm}^{-1}/{
m K}),$ тогда как для центров типа 3 (Gd³⁺ с ионом O²⁻ или S²⁻ в позиции ближайшего галогена) в CsSrCl₃ [7], CsCaCl₃ [15] и RbCaF₃ [16] величина начального расщепления уменьшается. Температурное поведение тетрагональных и тригональных центров Gd³⁺ в кристаллах структуры флюорита, аксиальные параметры которых обусловлены исключительно наличием в ближайшем окружении межузельных ионов фтора [17-19], аналогично поведению третьих центров в перовскитах и может быть связано с термическим расширением кристаллов. Величина $\delta b_{20}/\delta T$ центров Gd³⁺ с большим начальным расщеплением (центры 3 и тетрагональные центры во флюоритах) составляет $\sim 3 \cdot 10^{-5} \, ({\rm cm}^{-1}/{\rm K})$. Оказалось, что CsSrCl₃ является не единственным кристаллом (табл. 2 и 3), в котором центры Gd³ типа 2 имеют необычную температурную зависимость b₂₀. Оценка $\delta b_{20}/\delta T$ центров типа 2 в суперпозиционном приближении с использованием данных [23] о термическом расширении RbCdF₃ и CsCdF₃ дает величину порядка

Таблица 3. Параметры начального расщепления тетрагональных центров Gd^{3+} , ассоциированных с Li^+ в ближайшем узле иона B, в кубической фазе

ABX ₃	Т, К	$b_{20}, 10^{-4} \mathrm{cm}^{-1}$	$\delta b_{20}/\delta T$, cm ⁻¹ /K	Ссылка
CsCaF ₃	298	-388.3	$^{+2.2\cdot10^{-6}}_{+3.4\cdot10^{-6}}$	[22]
CsCdF ₃	300	-379.8		[22]

 $+3 \cdot 10^{-6} (cm^{-1}/K)$, сравнительно близкую к значению, полученному для CsCdF₃ экспериментально.

Кроме термического расширения кристалла заметный вклад в температурную зависимость начального расщепления могут давать спин-фононное взаимодействие при учете ангармонизма решетки [13,24]

$$\Delta b_{20}(T) = KT^4 \int_{0}^{\Theta/T} (e^x - 1)^{-1} x^3 dx, \qquad (12)$$

где Θ — температура Дебая, а также взаимодействие с локализованными колебаниями [25–27]

$$\Delta b_{20}(T) = K_0 \left(\coth \frac{h\nu}{kT} - 1 \right), \qquad (13)$$

где ν — частота локализованного колебания. В работе [28], однако, показано, что выражения (12), (13) при $K_0/K\Theta^4 = h\nu/3k\Theta$ дают практически одинаковые зависимости. Поскольку в эксперименте разделить эти вклады не просто, будем говорить о едином динамическом механизме температурной зависимости начального расщепления.

В работах [29–32] в результате кристаллохимического анализа типов рыхлости структуры перовскита найдены области существования реальных кристаллов перовскитов в координатах относительных ионных радиусов. Попадание в определенную область предполагает существование в кристалле жестких протяженных объектов, одномерных (шифтинг — сдвиг ионов в цепочке) или двумерных (тилтинг — вращение октаэдров с растяжением их в плоскости вращения), колеблющихся когерентно в существенно ангармоничном потенциале и являющихся предшественниками стабильных низкосимметричных фаз.

Отсутствие в CsCdF₃ и CsCaF₃ структурных фазовых переходов неплохо коррелирует с попаданием первого на границу, а второго вблизи границы областей тилтинга и шифтинга. Расположение последовательности кристаллов: RbCdF₃ (один структурный переход), KCdF₃ (два перехода) и CsSrCl₃ (три перехода) все глубже в зоне тилтинга, по-видимому, свидетельствует об увеличении ангармонизма решетки.

Вследствие этого можно ожидать, что в ряду кристаллов, приведенных в табл. 2, от CsCdF₃ к CsSrCl₃ динамический вклад в температурную зависимость величины начального расщепления будет возрастать. Тогда при разных знаках $\delta b_{20}/\delta T$ статического и динамического вкладов в b_{20} в этом ряду должно происходить изменение знака $\delta b_{20}/\delta T$ экспериментальной зависимости аксиального параметра, что и наблюдается (табл. 2).

Для получения достаточной для наблюдения концентрации комплексов Gd³⁺, ассоциированных с ионами Li⁺ (табл. 3), приходится применять уровни легирования гадолинием и литием, намного превосходящие (~1 mol.%) те, которые характерны для одноионного легирования (<0.1 mol.%). Вследствие этого получаются кристаллы с сильно измененными из-за дефектности интегральными параметрами, сравнение которых со свойствами слаболегированных кристаллов затруднительно. Тем не менее величина $\delta b_{20}/\delta T$ для центров Ge³⁺–Li⁺ ближе к значению, получающемуся при учете в суперпозиционном приближении термического расширения кристалла, чем для Gd³⁺–V_{Sr}, что свидетельствует об уменьшении динамического вклада.

Авторы искренне благодарны А.Е. Усачеву за предоставленные образцы, А.Е. Никифорову и Е.Л. Румянцеву за участие в обсуждении, А.П. Потапову за помощь в обработке результатов.

Список литературы

- Л.А. Позднякова, Б.В. Безносиков, И.Т. Коков, К.С. Александров. ФТТ 15, 12, 3586 (1973).
- [2] К.С. Александров, А.Т. Анистратов, Б.В. Безносиков, Н.В. Федосеева. Фазовые переходы в кристаллах галоидных соединений ABX₃. Новосибирск, Наука (1981). 266 с.
- [3] M. Midorikawa, Y. Ishibashi, Yu. Takagi. J. Phys. Soc. Jap. 41, 6, 2001 (1976).
- [4] А.Е. Усачев, Ю.В. Яблоков, Л.А. Позднякова, К.С. Александров. ФТТ 19, 7, 2156 (1977).
- [5] М.В. Черницкий, В.А. Важенин, А.Е. Никифоров, А.Е. Усачев, А.И. Кроткий, М.Ю. Артемов. ФТТ **33**, *12*, 3577 (1991).
- [6] А.Е. Усачев, Ю.В. Яблоков, С.Г. Львов. ФТТ 23, 5, 1439 (1981).
- [7] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, М.В. Черницкий. ФТТ 34, 5, 1633 (1992).
- [8] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, А.Е. Никифоров. ФТТ 36, 9, 2695 (1994).
- [9] В.А. Важенин, М.Ю. Артемов. ФТТ 39, 2, 370 (1997).
- [10] В.А. Важенин, М.Ю. Артемов, В.Б. Гусева. ФТТ 41, 2, 247 (1999).
- [11] J.Y. Buzare, J.C. Fayet, W. Berlinger, K.A. Müller. Phys. Rev. Lett. 42, 7, 465 (1979).
- [12] L.I. Levin. Phys. Stat. Sol. (b) 134, 275 (1986).
- [13] C.A. Bates, H. Szymczak. Phys. Stat. Sol. (b) 74, 225 (1976).
- [14] S.B. Oseroff, R.J. Calvo. Phys. Chem. Solids 33, 12, 2275 (1972).
- [15] Y. Vaills, J.Y. Buzare. J. Phys. C: Solid State Phys. 20, 14, 2149 (1987).
- [16] J.Y. Buzare, P.J. Simon. Phys. C; Solid State Phys. 17, 2681 (1984).
- [17] H.A. Buckmaster, Y.H. Shing. Phys. Stat. Sol. (a) 12, 325 (1972).

- [18] L.A. Boatner, R.W. Reynolds, M.M. Abraham. J. Chem. Phys. 52, 3, 1248 (1976).
- [19] А.Д. Горлов, А.П. Потапов, Л.И. Левин, В.А. Уланов. ФТТ 33, 4, 1422 (1991).
- [20] M. Arakava, H.J. Ebisu. Phys. Soc. Jap. 51, 1, 191 (1982).
- [21] M. Arakava, H. Aoki, H. Takeuchi, T. Yosida, K.J. Horai. Phys. Soc. Jap. 51, 8, 2459 (1982).
- [22] M. Arakava, H. Ebisu, H.J. Takeuchi. Phys. Soc. Jap. 54, 9, 3577 (1985).
- [23] M. Rousseau, J.Y. Gesland, J. Julliard, J. Nouet, J. Zarembowitch, A. Zarembowitch. Phys. Rev. B12, 4, 1579 (1975).
- [24] K.N. Shrivastava. Physics Reports (Section C of Physics Letters) 20, 3, 137 (1975).
- [25] W.M. Walsh, J. Jeener, N. Bloembergen. Phys. Rev. 139, 4A, A1338 (1965).
- [26] G. Pfister, W. Dreybrodt, W. Assmus. Phys. Stat. Sol. 36, 351 (1969).
- [27] А.А. Мирзаханян, К.Н. Кочарян. ФТТ 23, 1, 90 (1981).
- [28] H. Bill. Phys. Stat. Sol. (b) 89, K49 (1978).
- [29] F.A. Kassan-Ogly, V.E. Naish. Acta Cryst. B42, 297 (1986).
- [30] F.A. Kassan-Ogly, V.E. Naish. Acta Cryst. B42, 307 (1986).
- [31] F.A. Kassan-Ogly, V.E. Naish. Acta Cryst. B42, 314 (1986).
- [32] F.A. Kassan-Ogly, V.E. Naish. Acta Cryst. B42, 325 (1986).