О природе эффекта Фарадея в редкоземельном ортоалюминате TbAIO₃

© У.В. Валиев, М.М. Лукина, К.С. Саидов

Ташкентский государственный университет, 700095 Ташкент, Узбекистан E-mail: valiev@phys.silk.org

E mail. Valieve physiolik.org

(Поступила в окончательном виде 29 апреля 1999 г.)

Экспериментально исследованы магнитная восприимчивость χ , спектры поглощения и люминесценции, спектральная зависимость постоянной Верде V вдоль различных кристаллографических осей ромбического кристалла TbAlO₃ в интервале температур 78–300 К. Обнаружено, что в отличие от магнитной восприимчивости χ , измеренной вдоль оси [110] кристалла TbAlO₃, постоянная Верде V меняется обратно пропорционально температуре в указанном интервале *T*. Показано, что подобная температурная зависимость постоянной Верде, измеренной вдоль оси [110], связана с отсутствием вклада ван-флековского механизма "смешивания" (во внешнем поле *H*) состояний редкоземельного иона Tb³⁺ в фарадеевское вращение. Из сопоставления данных оптических и магнитных измерений определены волновые функции и величины штарковских интервалов между нижайшими штарковскими подуровнями основного мультиплета ⁷*F*₆ иона Tb³⁺ в структуре ортоалюмината TbAlO₃.

Хорошо известно, что взаимодействие с кристаллическим полем (КП) симметрии С_S приводит к сильной анизотропии магнитного момента редкоземельного (P3) иона Tb³⁺ в структуре ортоалюмината TbAlO₃ (пространственная группа D_{2h}^{16}), особенно при низких Существенный вклад в эту температурах T [1,2]. анизотропию вносит составляющая магнитного момента РЗ-подрешетки, связанная с ван-флековским вкладом в намагниченность [1]. Этот вклад, обусловленный "примешиванием" возбужденных состояний к основному при наложении внешнего магнитного поля Н, становится весьма заметным в области высоких температур ($T \ge 100 \,\mathrm{K}$) и сравнимым по величине со средним магнитным моментом РЗ-иона [2]. Поэтому при исследовании эфффекта Фарадея (ЭФ) в TbAlO₃ наряду с "парамагнитным" механизмом фарадеевского вращения (С-член ЭФ [3,4]), обусловленным различной заселенностью нижайших штарковских подуровней основного мультиплета (и, следовательно, пропорционального среднему магнитному моменту иона), необходимо учитывать вклад механизма "смешивания" основного и возбужденных состояний магнитоактивного иона (В-член ЭФ [3,4]) в результирующий ЭФ. Однако для корректного сопоставления вкладов различных механизмов магнитооптической активности (МОА) необходима детальная информация об энергетическом спектре и симметрии волновых функций электронных состояний РЗ-иона Tb³⁺ в структуре ортоалюмината. Поэтому в данном случае большую актуальность приобретает изучение поляризационно-оптических, магнитных и магнитооптических явлений, чувствительных к особенностям электронной структуры РЗ-ионов в низкосимметричных кристаллах.

В настоящей работе исследованы магнитная восприимчивость χ , ЭФ, спектры поглощения и люминесценции на монокристаллических образцах TbAlO₃, выращенных из раствора в расплаве. Измерение магнитной восприимчивости χ проводилось на вибрационном магнитометре в температурном интервале 80-300 К вдоль кристаллографических направлений [110] и [001] (ось с) ромбического кристалла TbAlO₃. Спектры поглощения и люминесценции измерялись в линейно-поляризованном свете в области полосы поглощения $^7F_6 \rightarrow {}^5D_4 \ (20\,000\text{--}20\,700\,\mathrm{cm^{-1}})$ при T = 77 и 300 K со спектральным разрешением не хуже 1-2 cm⁻¹ при исследовании оптического поглощения и 10–15 ст⁻¹ — для спектров вторичного свечения. Поляризационно-оптические эксперименты проводились при распространении света вдоль направлений [010] (ось b) и [001] (ось c) кристалла ТbAlO₃. Фарадеевское вращение вычислялось из температурных и спектральных зависимостей углов поворота большой оси эллипса поляризации светового излучения Θ , измеренных при перемагничивании вдоль оси [110] магнитоактивного кристалла в диапазоне длин волн 440-750 nm и интервале температур 90-300 К. Во всех экспериментах ошибки измерений величин магнитной восприимчивости χ не превышали ~ 2 - 3%, углов фарадеевского вращения ~ 5 – 7%. Точность установки осей кристалла была не хуже $\sim 2 - 3\%$.

1. Экспериментальные результаты и их обсуждение

1.1. Восприимчивость ТbAlO₃. На рис. 1 приведены температурные зависимости обратной магнитной восприимчивости TbAlO₃ для кристаллографических направлений [110] и [001], а также даны для сравнения результаты магнитных измерений из работы [2]. Из рис. 1 хорошо видно, что температурная зависимость величины $\chi_{[110]}$ весьма неплохо (в пределах ошибки измерений) согласуется с данными [2], в то время как для восприимчивости χ_c соответствие с ними имеет более качественный характер в исследованном интервале температур.

Рис. 1. Температурные зависимости обратной магнитной восприимчивости $1/\chi$, измеренной вдоль осей [110] и [001] ромбического кристалла TbAlO₃: I — расчет $\chi_{[110]}^{-1}$ по формуле (3); $2 - \chi_{[110]}^{-1}$, экспериментальные данные настоящей работы; $3 - \bar{\chi}^{-1}$, где $\bar{\chi} = \frac{\chi_a + \chi_b}{2}$ (χ_a и χ_b — значения χ вдоль осей a и b по данным [2]); 4 — расчет χ_c^{-1} по формуле (2); $5, 6 - \chi_c^{-1}$, экспериментальные данные настоящей работы и [2] соответственно. На вставке — зависимости обратной постоянной Верде 1/V от температуры T. Постоянная Верде V определена на длине волны $\lambda = 506$ nm для кристаллографического направления [110].

На рис. 1 при низких температурах ($T \leq 100 \,\mathrm{K}$) максимальная магнитная восприимчивость TbAlO₃ наблюдается в плоскости ab, а восприимчивость вдоль оси c (χ_c) существенно меньше $\chi_{[110]}$ и стремится с понижением температуры к постоянному пределу, свидетельствующему о ее ван-флековском происхождении (согласно данным [2]). С другой стороны, несмотря на резкое уменьшение величины восприимчивости $\chi_{[110]}$ с возрастанием температуры, анизотропный характер магнитной восприимчивости TbAlO₃ сохраняется и в области высоких температур (рис. 1). Как установлено в [1], подобное поведение магнитной восприимчивости TbAlO₃ (особенно при низких T [2,5]) свидетельствует о том, что основным состоянием иона Tb³⁺ в КП является квазидублет, образованный двумя близко расположенными штарковскими синглетами (величина "щели" $\leq 10 \, {\rm cm}^{-1}$), волновые функции которых принадлежат к различным неприводимым представлениям точечной группы C_{S} (A и B) [1]. Поэтому ион Tb³⁺ в TbAlO₃ при низких температурах рассматривается как "изинговский" с осью анизотропии — "изинговской" осью, лежащей в плоскости *ab* под углом $\alpha \approx \pm 36^{\circ}$ к оси *a* кристалла (знаки (±) относятся к двум кристаллографически неэквивалентным позициям, различающимся ориентацией локальных осей). В этой области температур восприимчивость TbAlO₃, измеренная вдоль оси [110], может быть представлена, согласно [2], в следующем виде:

$$\chi_{[110]} = \frac{1}{2} \left(\chi_0^{(0)} + \chi_{V-F}^{(0)} \right)$$
$$= \frac{1}{2} \frac{N\mu_B^2}{k} \left[\frac{81}{T + \Theta_p} + \frac{13.5k}{\Delta_1} \right], \qquad (1)$$

где N — число РЗ-ионов; μ_B — магнетон Бора; k — постоянная Больцмана; $\Theta_p \approx 5 \,\mathrm{K}$ — парамагнитная температура Кюри, обусловленная $R^{3+} - R^{3+}$ -взаимодействием; $\Delta_1 \approx 200\,cm^{-1}$ — энергетический интервал между "смешивающимися" состояниями РЗ-иона Тb³⁺ [2]. В формуле (1) вклад $\chi_0^{(0)}$ — восприимчивость вдоль "изинговской" оси (продольная восприимчивость), соответствующая магнитному моменту, параллельному оси анизотропии: $\mu_0 \approx 9\mu_B$ [2], слагаемое $\chi^{(0)}_{V-F}$ — ван-флековский вклад при низких T.¹ Если выбрать "изинговскую" ось в качестве оси *z* — локальной системы координат РЗ-иона (находящегося в одной из неэквивалентных позиций), а ось у — параллельной оси с кристалла, то волновые функции основного квазидублета, соответствующие максимальному магнитному моменту иона Tb³⁺ ($\mu_0 \approx 9\mu_B$), запишутся в локальных осях

$$|A\rangle = \frac{1}{\sqrt{2}} (|6, +6\rangle + |6, -6\rangle),$$
$$|B\rangle = \frac{1}{\sqrt{2}} (|6, +6\rangle - |6, -6\rangle).$$

В то же время величину ван-флековской поправки к магнитному моменту иона Tb^{3+} при низких *T* нетрудно объяснить, предполагая, что в разложении волновой функции первого возбужденного состояния ("примешивающегося" к основному) со значительным весом (~1) представлены "чистые" $|J, \pm M_J\rangle$ -состояния типа $|6, \pm 5\rangle$. В выражении (1) множитель (1/2) появляется при суммировании (и последующем усреднении) по неэквивалентным позициям РЗ-ионов в структуре ортоалюмината, а верхний индекс (0) означает принадлежность к основному состоянию. При повышении температуры поведение магнитных свойств TbAlO₃ существенно усложняется и помимо отмеченной выше анизотропии χ обратные магнитные восприимчивости начинают нелинейно

¹ Выбор оси [110] в наших измерениях продиктован тем, что при наложении магнитного поля H в этом направлении P3-ионы Tb³⁺, находящиеся в одной из групп неэквивалентных позиций, намагничиваются в линейном по полю приближении, так как их "изинговские" оси почти параллельны оси [110]. Для ионов Tb³⁺, находящихся в другой группе неэквивалентных мест, этого не происходит, так как их "изинговские" оси почти перпендикулярны полю H (и оси [110]) и их вклад в магнитный момент является ван-флековской поправкой к нему.

Рис. 2. Спектры люминесценции (*a*) и поглощения (*b*) TbAlO₃, измеренные при T = 300 (*a*) и 78 K (*b*) в поляризованном свете (E|| *a* — оси, где E — электрический вектор световой волны). *a* — вдоль оси *c*, *b* — вдоль оси *b* кристалла. Энергии переходов указаны в таблице. На вставке — штарковская структура основного ⁷F₆ и возбужденного ⁵D₄ мультиплетов иона Tb³⁺ в TbAlO₃. В скобках указаны энергии штарковских подуровней (в cm⁻¹).

зависеть от *T* (рис. 1). В этом случае их температурный ход может быть объяснен значительным вкладом первого возбужденного состояния, расположенного при энергии $\sim 200 \,\mathrm{cm^{-1}}$ в спектре основного мультиплета 7F_6 иона $\mathrm{Tb^{3+}}$ в TbAlO₃ и термически заселяемого по мере повышения температуры *T*. Предположим, что это состояние представляет собой квазидублет, образованный возбужденными штарковскими синглетами, волновые функции которых преобразуются по двум однотипным неприводимым представляениям группы *C*_S (*A'* и *A''*) и могут быть записаны (в локальных осях РЗ-иона)

$$egin{aligned} |A'
angle \simeq rac{1}{\sqrt{2}}ig(e^{-i\Psi_1}|6,\,+5
angle-e^{i\Psi_1}|6,\,-5
angleig), \ |A''
angle \simeq -rac{i}{\sqrt{2}}ig(e^{-i\Psi_2}|6,\,+4
angle-e^{i\Psi_2}|6,\,-4
angleig), \end{aligned}$$

где $e^{i\Psi_1}$, $e^{i\Psi_2}$ — фазовые множители, удовлетворяющие условию $(\Psi_1 + \Psi_2) \approx \pi/2$. Подобное возбужденное состояние приводит к тому, что магнитный момент, связанный с ним, направлен вдоль оси *у* (оси *c*) локальной системы координат иона, обнаруживая при этом "изинговское" поведение. Его величина близка к максимально возможной и составляет $\mu_1 \approx 7\mu_B$. Поэтому, если поле *H* направлено вдоль оси *c* кристалла, то происходит как "перемешивание" волновых функций состояний основного (A, B) и первого возбужденного (A', A'')квазидублетов, так и расщепление в поле H заселяемых при повышении температуры подуровней квазидублета (A', A''). Следовательно, выражение для поперечной восприимчивости χ_c , справедливое в области высоких температур, имеет следующий вид:

$$\chi_c = \frac{N\mu_B^2}{k} \left[\frac{13.5k}{\Delta_1} (\rho_0 - \rho_1) + \frac{49.5}{T} \rho_1 \right], \qquad (2)$$

где ρ_0 и ρ_1 — больцмановские населенности состояний основного и первого возбужденного квазидублетов. В то же время магнитная восприимчивость $\chi_{[110]}$ TbAlO₃ в широком интервале температур ($T \ge 100$ K) определяется соотношением, близким по форме к соотношению (1)

$$\chi_{[110]} = \frac{1}{2} N \mu_B^2 k \left[\frac{81}{T + \Theta_p} \rho_0 + \frac{13.5k}{\Delta_1} (\rho_0 - \rho_1) \right]$$
$$= \frac{1}{2} (\chi_0 + \chi_{V-F}), \tag{3}$$

в котором вкладом первого возбужденного квазидублета (A', A'') можно пренебречь, так как его "изинговский" магнитный момент ориентирован параллельно оси *с* и состояния квазидублета (A', A'') не расщепляются во внешнем поле *H*, ориентированном в плоскости

Люминесценция TbAlO₃ Поглощение TbAlO₃ энергия энергия полоса полоса перехода, cm^{-1} перехода, cm^{-1} 1'1 20699 20575 2' 2 20658 20578.5 3′ 3 20588 20582 4′ 4 20500 20601 5′ 5 20456 20642 6′ 20374 20646.4 6 7′ 7 20296 20651 8' 8 20686.4 20236 9 9′ 20176 20702.2 10 20063

Энергии переходов в TbAlO₃

симметрии КП — плоскости *ab* кристалла. Результаты расчетов температурной зависимости величины $\chi_{[110]}$, выполненные по формуле (3), приводятся на рис. 1, из которого видно, что в исследованном интервале температур 80-300 К экспериментальные и теоретические зависимости магнитной восприимчивости $\chi_{[110]}$ хорошо согласуются друг с другом (в пределах погрешности опыта $\sim 2 - 3\%$). Некоторые количественные отличия теоретически рассчитанных (по формуле (2)) и измеренных в настоящей работре (и в [2]) величин ванфлековской — поперечной восприимчивости χ_c — в области температур T > 100 К вполне могут быть связаны с тем обстоятельством, что при выводе соотношения (2) мы пренебрегли взаимодействием состояний первого возбужденного квазидублета (~ 200 cm⁻¹) с вышележащими штарковскими подуровнями основного мультиплета иона Тb³⁺. Предполагаемый выше характер штарковского расщепления в КП нижних подуровней основного мультиплета 7F_6 иона Tb³⁺ вполне однозначно подтверждается данными поляризационно-оптических исследований. На рис. 2 представлен спектр люминесценции РЗ-иона Tb³⁺ в TbAlO₃, записанный при T = 300 K в линейно-поляризованном свете на излучательном 4f-4f-переходе ${}^{5}D_{4} \rightarrow {}^{7}F_{6}$ (20000-20700 сm⁻¹). Детальное сопоставление энергий характерных особенностей спектра вторичного свечения (см. таблицу) позволяет, с одной стороны, идентифицировать их с оптическими переходами, происходящими между штарковскими подуровнями основного и возбужденного мультиплетов иона Tb³⁺ в структуре ортоалюмината, а с другой воссоздать (хотя и частично) картину штарковского расщепления основного мультиплета ⁷F₆ в КП симметрии C_S (вставка на рис. 2). Действительно, сравнение энергий полос: -1, -2, -3 и соответственно -4, -5, -6 показывает, что ближайшим к основному состоянию является уровень или группа уровней, расположенных на расстоянии $\approx 200\,\mathrm{cm}^{-1}$ от него. Сопоставление энергий других полос друг с другом (например, -1 и -10 и т.д.) позволяет однозначно определить энергии вышележащих штарковских подуровней и установить, что общая величина кристаллического расщепления основного мультиплета 7F_6 в TbAlO₃ составляет ~ 500 cm⁻¹ (вставка на рис. 2). Более того, достаточно высокая степень "изолированности" подуровней основного состояния (квазидублета) от вышележащих возбужденных состояний мультиплета 7F_6 ($\Delta_1 \approx 200 \, {\rm cm^{-1}}$) позволила также установить из спектроскопических данных по энергиям пиков поляризованного оптического поглощения на переходе ${}^7F_6 \rightarrow {}^5D_4$ при $T = 78 \, {\rm K}$ (см. таблицу) характер штарковского расщепления возбужденного мультиплета 5D_4 основной $4f^8$ конфигурации иона Tb³⁺ в структуре ортоалюмината (рис. 2).

1.2. Эффект Фарадея в ТbAlO₃. РЗ-соединения со структурой ортоалюмината в оптическом отношении представляют собой двухосные кристаллы, и при их исследовании возникает проблема изучения линейных магнитооптических эффектов (ЭФ и т.п.) на "фоне" большого естественного двупреломления ($\Delta_n \sim 10^{-2}$) [5,6]. Поэтому измеряемые зависимости углов поворота большой оси эллипса поляризации Θ в TbAlO₃ от длины волны λ , толщины кристалла l (а также и темпера-

Рис. 3. Температурная зависимость угла поворота большой оси эллипса поляризации Θ в TbAlO₃ на длине волны $\lambda = 506$ nm. На вставке — зависимость $V \cdot T$ от температуры на длине волны $\lambda = 506$ nm для оси [110].

туры T^2 (рис. 3)) имеют осциллирующий характер, причем амплитуда осцилляций пропорциональна углу фарадеевского вращения α_F , а их период — величине естественного двупреломления Δ_n [6,7]. Восстанавливая из температурных (рис. 3) и спектральных зависимостей углов Θ , измеренных вдоль оси [110], аналогичные зависимости для углов фарадеевского вращения (по методике работы [5]), нетрудно найти постоянную Верде V ортоалюмината TbAlO₃. Анализ спектрального хода постоянной Верде V в TbAlO₃ показал, что он с хорошей степенью точности аппроксимируется частотной зависимостью: $V \sim \omega^2/(\omega_0^2 - \omega^2)$, где ω — световая частота, $\omega_0 = 99 \cdot 10^{14} \, {
m s}^{-1}$ "эффективная" частота разрешенных (по спину и по четности) электродипольных переходов 4f - 5d в ионах Tb³⁺ в структуре ортоалюмината. В то же время исследования температурной зависимости ЭФ в TbAlO₃ вдоль оси [110] в температурном интервале 90-300 К привели к неожиданному результату. Из рис. 1 следует, что в отличие от обратной восприимчивости χ^{-1} зависимость обратной постоянной Верде 1/V от температуры T на длине волны $\lambda = 506$ nm оказывается линейной (в пределах ошибки эксперимента ~ 7%). Наряду с постоянством произведения V · T в исследованном интервале температур отмеченная особенность поведения ЭФ свидетельствует о том, что константа Верде V в первом приближении меняется обратно пропорционально температуре (вставка на рис. 3). Taким образом, постоянная Верде V_[110] РЗ-ортоалюмината TbAlO₃ в направлении оси [110] оказывается связанной с обратной температурой (V ~ 1/T), что существенно отличается от зависимости ($V \sim \chi$), обнаруженной в [5] при исследовании ЭФ вдоль оси а кристалла TbAlO₃. При этом отсутствие наклона температурной зависимости $V \cdot T$ (рис. 3), по-видимому, обусловлено очевидной малостью вклада температурно-независимого (либо слабо зависящего от температуры Т) механизма ванфлековского "смешивания" (В-член ЭФ [3]) в фарадеевское вращение TbAlO₃, измеренного вдоль оси [110].³ Это может быть вызвано следующими причинами. Как известно [8,9], зависящий от Т вклад в магнитооптическую активность некрамерсовского РЗ-иона (Tb³⁺, Но³⁺ и т.д.), энергетический спектр которого состоит из полностью вырожденных штарковских подуровнейсинглетов, может возникнуть лишь при учете (по теории возмущения) эффекта "смешивания" во внешнем магнитном поле Н близко расположенных синглетов основного состояния — квазидублета. В этом случае

выражение для С-члена ЭФ может быть записано [8]

$$\alpha_F^C = \frac{2\pi N}{c\bar{n}\hbar} \left(\frac{\bar{n}^2 + 2}{3}\right)^2 \omega^2 H \frac{1}{2}$$
$$\times \sum_{a,b,j,r} \frac{\mathrm{Im}\left[\langle a^r | \hat{\mu}_z | b^r \rangle \left(\langle b^r | \hat{P}_x | j \rangle \langle j | \hat{P}_y | a^r \rangle - \langle b^r | \hat{P}_y | j \rangle \langle j | \hat{P}_x | a^r \rangle \right)\right]}{kT(\omega_{0j}^2 - \omega^2)}, \quad (4)$$

где r = 1, 2 — индекс неэквивалентной позиции; \hat{P}_x и \hat{P}_y — соответствующие компоненты дипольного момента РЗ-иона, находящегося в *r*-м узле (позиции); $\hat{\mu}_z$ — оператор *z*-проекции магнитного момента; $|a^r\rangle$, $|b^r\rangle$ — волновые функции подуровней квазидублета, $|j\rangle$ — волновая функция возбужденного синглета, на который происходит оптический переход с частотой ω_{0j} ; \bar{n} — средний показатель преломления среды. В этом же приближении выражение для температурнонезависимого *B*-члена ЭФ, обусловленного "примешиванием" первого возбужденного состояния основного мультиплета к основному (квазидублету) во внешнем поле *H*, запишется, согласно [10],

$$\alpha_F^B = \frac{4\pi N}{c\bar{n}\hbar} \left(\frac{\bar{n}^2 + 2}{3}\right)^2 \frac{\omega^2 H}{\Delta_1} \frac{1}{2}$$
$$\times \sum_{a,b,j,r} \frac{\mathrm{Im}\left[\langle a^r | \hat{\mu}_y | d^r \rangle \left(\langle a^r | \hat{P}_x | j \rangle \langle j | \hat{P}_x | d^r \rangle - \langle a^r | \hat{P}_x | j \rangle \langle j | \hat{P}_z | d^r \rangle \right)\right]}{(\omega_{0j}^2 - \omega^2)}, \quad (5)$$

где $|a^r\rangle, |d^r\rangle$ — волновые функции основного и возбужденного состояний основного мультиплета РЗ-иона; $\hat{\mu}_{v}$ — оператор *у*-проекции магнитного момента. Пренебрегая расщеплением уровней (приближение Джадда-Офельта) при суммировании формул (4) и (5) по возбужденным состояниям $|j\rangle$, принадлежащим смешанной возбужденной $4f^{n-1}5d$ конфигурации РЗ-иона, усредним полученные выражения по кристаллографическинеэквивалентным позициям иона в структуре ортоалюмината. В рамках такой модели нетрудно убедиться, что константы Верде V РЗ-ортоалюмината вдоль осей a, b и с кристалла пропорциональны соответствующим магнитным восприимчивостям. Действительно, расчет постоянной Верде V_a (вдоль оси a) в TbAlO₃ показал, что в широком интервале температур она может быть описана следующим выражением:

$$V_a = \left(\frac{2-g_0}{g_0}\right) A \chi_a \frac{\omega^2}{\omega_0^2 - \omega^2},\tag{6}$$

где $\chi_a = (\chi_0 \cos^2 \alpha_0 + \chi_{V-F} \sin^2 \alpha_0)$ — магнитная восприимчивость TbAlO₃ вдоль оси *a* (см. также формулу (3)); *A* — постоянная, пропорциональная силе осциллятора *f* разрешенного оптического перехода со средней частотой ω_0 . Однако при ориентации внешнего поля *H* вдоль оси [110] для P3-ионов Tb³⁺, находящихся в одной из неэквивалентных позиций в структуре ортоалюмината, локальная ось *z* (а для другой — ось *x*) почти совпадает по направлению с направлением распространения поперечной световой волны: **k** || **H**, где **k** — волновой вектор.

 $^{^2}$ В случае, если двупреломление в кристалле зависит от температуры. Величина Δ_n на длине волны $\lambda\approx500\,\rm nm$ составляет $1.8\cdot10^{-2}$ при $T=300\,\rm K.$

³ Отсутствие наклона зависимости $V \cdot T$ также указывает и на пренебрежимо малый вклад в ЭФ "диамагнитного" (*A*-член ЭФ [3]) механизма МОА, обусловленного расщеплением во внешнем поле *H* возбужденных состояний РЗ-ионов Tb³⁺ в TbAlO₃ (см. также [5]).

В этом случае *z*-компонента дипольного момента иона и связанные с ней матричные элементы: $\langle a|\hat{P}_z|j\rangle$ (и $\langle j|\hat{P}_z|d\rangle$) в формуле (5) будут близки к нулю, вследствие чего температурная зависимость константы Верде $V_{[110]}$ в TbAlO₃ будет определяться только продольной восприимчивостью χ_0 . Как видно из выражения (3), слагаемое χ_0 , вообще говоря, пропорционально обратной температуре 1/T в интервале 90–300 K, что по крайней мере на качественном уровне согласуется с результатами магнитооптических экспериментов, приводимых на рис. 1, 3.

Список литературы

- А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985). 296 с.
- [2] L. Holmes, R. Sherwood, L.G. Van Vitert. J. Appl. Phys. 39, 2, 1373 (1968).
- [3] A.D. Buckingham, P.J. Stephens. Ann. Phys. Chem. 17, 399 (1966).
- [4] У.В. Валиев, А.И. Попов, Б.Ю. Соколов. Оптика и спектроскопия 61, 5, 1156 (1986).
- [5] У.В. Валиев, А.А. Клочков, М.М. Лукина, М.М. Турганов. Оптика и спектроскопия 63, 3, 543 (1987).
- [6] Р.В. Писарев. В сб.: Физика магнитных диэлектриков / Под ред. Г.А. Смоленского. Наука, Л. (1974). С. 356.
- [7] М.В. Четкин, Ю.И. Щербаков. ФТТ 11, 6, 1620 (1969).
- [8] P.J. Stephens. Adv. Chem. Phys. 35, 197 (1976).
- [9] У.В. Валиев, Б.Ю. Соколов, Ж.Ш. Сиранов. Оптика и спектроскопия 84, 3, 477 (1998).
- [10] П.Н. Шатц, А.Д. Мак-Каффри. Успехи химии 40, 9, 1698 (1971).