Упругие и неупругие свойства биоморфных композитов SiC/Si и биоморфных SiC на основе дуба и эвкалипта

© Б.К. Кардашев, А.С. Нефагин, Б.И. Смирнов, А.R. de Arellano-Lopez*, J. Martinez-Fernandez*, R. Sepulveda*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

* Universidad de Sevilla,

41080 Sevilla, Spain

E-mail: smir.bi@mail.ioffe.ru

(Поступила в Редакцию 2 декабря 2005 г.)

Проведены сравнительные исследования упругих и микропластических свойств биоморфных композитов био-SiC/Si и биоморфных био-SiC, приготовленных на основе дуба и эвкалипта путем пиролиза исходного материала с последующими инфильтрацией расплавленного кремния в углеродную матрицу и дополнительной химической обработкой для удаления избыточного кремния. Исследования выполнены акустическим резонансным методом составного вибратора при продольных колебаниях на частотах около 100 kHz. Показано, что в био-SiC (как и в био-SiC/Si) при малых амплитудах деформации ε адсорбция молекул внешней среды (воздуха) в значительной степени определяет величины модуля Юнга E и внутреннего трения (декремента акустических колебаний δ), причем изменения E и δ при этих амплитудах являются необратимыми. По данным акустических измерений определены механические кривые "напряжение–микропластическая деформация" для исследованных материалов при температурах 100 и 290 К.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-03-33183), Программы Президиума РАН (П-03) и Министерства науки и технологии Испании (проект МАТ 2003-05202-CO2-01).

PACS: 62.20.Fe, 62.20.Dc, 81.40.Jj

1. Введение

Настоящая работа продолжает исследования [1-3], посвященные экспериментальному изучению упругих и неупругих характеристик биоморфных материалов, получаемых на основе различных пород дерева. К настоящему времени наибольший интерес представляют биоморфные композиты SiC/Si (называемые также экокерамикой — ecoceramics: environment conscious ceramics), которые получают путем пиролиза (обугливания) выбранного дерева с последующей инфильтрацией в углеродную матрицу расплава кремния [4]. При этом в результате химической реакции с углеродной матрицей образуется кубический карбид кремния (3C-SiC), и при наличии избыточного Si формируется композит SiC/Si. Композиты образуют характерные для каждого сорта дерева ячеистые канальные структуры, в которых карбид кремния, пустые каналы и каналы, заполненные избыточным кремнием, располагаются вдоль направления роста дерева.

В работе [1] изучались при повышенных температурах (до 1300 K) упругие свойства биоморфных композитов SiC/Si, приготовленных на основе дуба и эвкалипта. В [2] в области умеренных температур (116–296 K) исследовалось влияние амплитуды колебаний на модуль Юнга E и логарифмический декремент δ образцов композита SiC/Si, приготовленного из белого эвкалипта. Было показано, что, несмотря на то что этот компо-

зит разрушается без заметной остаточной деформации, в нем при высоких амплитудах проявляется заметная нелинейная неупругая микропластическая деформация. Кроме того, в [2] было обнаружено, что из-за наличия в SiC/Si пор и остаточного углерода адсорбция–десорбция молекул внешней среды (воздуха) оказывает влияние как на модуль упругости, так и на поглощение энергии ультразвуковых колебаний. Выводы, сделанные в результате анализа данных, полученных на композиционных образцах SiC/Si, нашли свое подтверждение в работе [3], где аналогичные эффекты проявились на образцах углеродной биоматрицы, также приготовленной из белого эвкалипта.

Таким образом, в настоящее время имеется комплекс экспериментальных данных по упругим и неупругим свойствам биоуглеродной матрицы белого эвкалипта и композита SiC/Si, приготовленного на ее основе. Безусловный интерес представляют аналогичные исследования биоморфного SiC, который может быть получен из композита SiC/Si путем удаления избыточного кремния химическим способом [5].

В настоящей работе проводится сравнение результатов акустических исследований упругих и неупругих свойств композитов SiC/Si (био-SiC/Si), приготовленных из дуба и эвкалипта, с экспериментальными данными, полученными для биоморфных SiC (био-SiC), которые не содержат избыточного кремния (после химического удаления "лишнего" Si из указанных композитов).

2. Образцы и методика эксперимента

Керамические образцы SiC/Si получались путем инфильтрации в вакууме расплавленного кремния в пористое обугленное дерево (испанский дуб haya и белый эвкалипт) после пиролиза в атмосфере аргона при 1000°C [6].

Индивидуальная биологически сложная ячеистая структура дерева, содержащая вытянутые преимущественно вдоль направления роста дерева каналы, сохраняется и в биоуглеродной матрице. В ней наблюдается два вида пустых каналов [7]: с большими диаметрами (средние размеры $\sim 30\,\mu{
m m}$ для дуба и $\sim 60\,\mu{
m m}$ для эвкалипта) и небольшими диаметрами (~4µm в обоих случаях). Суммарно объемная доля этих пор для дуба составляет $\sim 36.8\%$, а для эвкалипта $\sim 43.3\%$. При инфильтрации в каналы биоуглеродной матрицы расплава Si в результате химической реакции углерода и кремния образуется кубический карбид кремния (3C-SiC). Окончательно биокомпозит SiC/Si формируется из 3C-SiC, избыточного Si, расположенного в каналах бывшей матрицы, и небольшого количества углерода, не вступившего в реакцию с кремнием [4].

Образцы биоморфного SiC в настоящей работе были получены удалением избыточного кремния химическим способом [5] из биокомпозитов SiC/Si.

Образцы для акустических исследований были приготовлены в виде прямоугольных стержней сечением ~ (4×4) mm и длиной 45–50 mm, ориентированных вдоль направления роста дерева. Измерения проводились методом составного пьезоэлектрического вибратора [8]. В образце испытуемого материала, приклеенном к пьезокварцу, возбуждалась продольная стоячая волна. Длины полуволновых стержней исследуемого образца и кварцевого преобразователя подбирались такими, чтобы резонансная частота колебаний равнялась ~ 100 kHz. Измерения модуля Юнга *E* и декремента δ проводились последовательно при увеличении и уменьшении амплитуды колебательной деформации ε в диапазоне от ~ 10^{-7} до ~ $(1-3)10^{-4}$.

Процедура акустических измерений, как и в [2,3], была следующей. Сначала на свежеприготовленном образце, находившемся длительное время после изготовления на воздухе при атмосферном давлении и комнатной температуре, измерялись амплитудные зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$. Затем акустическая система (склеенные образец и кварц) помещалась в вакуумную камеру. Все последующие измерения $E(\varepsilon)$ и $\delta(\varepsilon)$ проводились в вакууме (~ 10^{-3} mm Hg) как при комнатной (~ 290 K), так и при низкой (~ 100 K) температурах. Из зависимостей $E(\varepsilon)$ по схеме, предложенной в [9,10], строились кривые "напряжение–микропластическая деформация". Подобные построения позволяют проводить наглядное сравнение микропластических свойств различных материалов (а в некоторых случаях и макропластических свойств).

3. Экспериментальные данные и обсуждение

На рис. 1 и 2 представлены примеры амплитудных зависимостей модуля Юнга Е и логарифмического декремента δ для образцов био-SiC и композита био-SiC/Si, приготовленных из дуба. Образцы впервые после изготовления подвергались в этих опытах воздействию высоких амплитуд деформации при комнатной температуре (290 К). Видно, что в обоих случаях при постепенном увеличении колебательной нагрузки на образец измеряемый модуль упругости заметно увеличивается, а затухание уменьшается (за исключением нескольких последних точек при больших ε , когда декремент может слабо возрастать, а модуль падать). Изменения E и δ , возникшие при первом увеличении є, являются необратимыми: при уменьшении є ни модуль, ни декремент не возвращаются к исходным значениям. Повторные измерения $E(\varepsilon)$ и $\delta(\varepsilon)$ практически совпадают с зависимостями, полученными при уменьшении є в первом измерении. Аналогичное поведение $E(\varepsilon)$ и $\delta(\varepsilon)$ наблюдается и при последующих испытаниях в вакууме.

На рис. З приведен пример данных для био-SiC, полученных при низкой (100 K) температуре на том же образце, приготовленном из дуба. Здесь следует обратить внимание на то, что в области умеренных амплитуд (до $\varepsilon \sim 10^{-4}$) модуль *E* при первом увеличении ε также заметно падает; а возрастание *E* в этом опыте при

Рис. 1. Амплитудные зависимости модуля Юнга E и декремента δ для био-SiC, измеренные на приготовленном из дуба образце последовательно два раза (1 — первое измерение, 2 — второе) с перерывом около 1 min; измерения проводились на воздухе при атмосферном давлении; стрелки указывают направления изменения ε ; T = 290 K.

Рис. 2. Амплитудные зависимости модуля Юнга Е и декремента б для био-SiC/Si, измеренные на приготовленном из дуба образце последовательно 2 раза (1 — первое измерение, 2 — второе) с перерывом около 1 min; измерения проводились на воздухе при атмосферном давлении; стрелки указывают направления изменения ε ; T = 290 K.

больших є связано с их весьма высокими значениями, значительно (примерно в 3 раза) превосходящими максимальную величину є на рис. 1. Очевидно, что высокие амплитуды, воздействию которых данный образец в этом опыте подвергался впервые, вызвали дополнительный (к уже имевшему место при комнатной температуре) эффект десорбции молекул воздуха.

Необходимо отметить, что зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ для керамик био-SiC/Si и био-SiC, приготовленных из дуба, качественно напоминают аналогичные кривые, полученные ранее для био-SiC/Si на основе эвкалипта [2]. То же самое можно сказать и об эвкалиптовой керамике био-SiC.

Таким образом, полученные результаты свидетельствуют о том, что и в очищенном от избыточного кремния био-SiC, как и в композите био-SiC/Si, адсорбциядесорбция молекул, входящих в состав воздуха, оказывает существенное влияние на модуль Юнга и декремент упругих колебаний. Десорбция, возникающая под действием высоких амплитуд, приводит к необратимым последствиям: увеличению модуля Е и уменьшению декремента δ . Аналогичные эффекты (рост *E* и падение δ) имеют место в био-SiC и под влиянием вакуумной откачки.

В то же время при больших амплитудах реакция материала оказывается связанной не только с молекулами адсорбированных газов. Область высоких амплитуд, где наблюдается увеличение затухания и уменьшение модуля с ростом амплитуды, характерна для многих материалов, обладающих пластичностью [8]. Такое поведение E и δ в исследуемых био-SiC/Si и био-SiC, наблюдаемое, как правило, при повторных измерениях $E(\varepsilon)$ и $\delta(\varepsilon)$, свидетельствует о том, что в них имеются элементы структуры, аналогичные подвижным дислокациям в кристаллах, которые обеспечивают заметную микропластическую деформацию под влиянием ультразвуковой нагрузки. Полученные в настоящей работе результаты акустических измерений на био-SiC/Si и био-SiC позволяют получить для них диаграммы "напряжение σ -микропластическая деформация ε_d ". Описание процедуры построения подобных диаграмм из зависимостей $E(\varepsilon)$ приведено в [9,10].

Механические (упругие и микропластические) характеристики материалов, исследованных в настоящей работе, представлены в таблице. Микропластические свойства более подробно демонстрируются на рис. 4 (комнатная температура) и рис. 5 (100 К). Зависимости $\sigma(\varepsilon_d)$ на рис. 4 и 5 построены по данным, аналогичным

Рис. 3. Амплитудные зависимости модуля Юнга Е и декремента δ для био-SiC, измеренные на приготовленном из дуба образце последовательно 2 раза (1 — первое измерение, 2 — второе) с перерывом около 1 min; измерения проводились в вакууме на образце, предварительно подвергавшемся воздействию высоких амплитуд при 290 К; стрелки указывают направления изменения ε ; $T = 100 \, \text{K}$.

кривым 2 для $E(\varepsilon)$, показанным на рис. 1–3. Из рисунков и таблицы видно, что наиболее высокими механическими характеристиками обладают композиционные образцы SiC/Si, приготовленные на основе эвкалипта (при 100 К микропластическая деформация ε_d для этого материала становится едва заметной при самых высоких значениях колебательного напряжения σ). Аналогичные образцы из дуба имеют более низкие значения модуля

Рис. 4. Кривые "напряжение–микропластическая деформация", полученные по данным акустических измерений на различных образцах биоморфных керамик SiC и композитов SiC/Si при температуре 290 К.

Рис. 5. Кривые "напряжение-микропластическая деформация", полученные по данным акустических измерений на различных образцах биоморфных керамик SiC и композитов SiC/Si при температуре 100 К.

Плотность ρ , модуль Юнга E и условный предел микротекучести σ_s при величине неупругой деформации $\varepsilon_d = 0.4 \cdot 10^{-8}$ для различных образцов биокерамик карбида кремния

Материал	$T = 290 \mathrm{C}$			$T = 100 \mathrm{K}$	
	ho, g/cm ³	E, GPa	σ_s , MPa	E, GPa	σ_s , MPa
био-SiC/Si (эвкалипт)	2.28	235.12	73	235.55	> 90
био-SiC (эвкалипт)	2.00	182.75	5.7	183.27	7.8
био-SiC/Si (луб)	2.01	216.93	28	217.28	51
био-SiC (дуб)	1.64	144.08	4.2	144.84	19
	•				

Юнга *E* и условного предела микротекучести σ_s . Удаление избыточного кремния приводит к существенному понижению *E* и σ_s как для дуба, так и для эвкалипта. Интересно отметить, что это снижение σ_s для эвкалипта оказывается более значительным, чем для дуба. Особенно ярко это выражено при низкой температуре (рис. 5).

В настоящее время трудно указать конкретные причины проявления наблюдаемой зависимости упругих и микропластических свойств исследованных керамик от породы дерева. Очевидно, что особенности структуры эвкалипта и дуба должны каким-то образом проявляться в измеряемых значениях E и σ_s . Эти особенности могут быть связаны как с различной формой и геометрическими размерами ячеек и пор, так и с различным составом химических элементов в исходной структуре того или иного дерева. Более подробное изучение этих вопросов требует проведения дальнейших исследований.

Таким образом, показано, что упругие и микропластические свойства SiC биокерамик существенно зависят: 1) от породы дерева, из которого приготовлена керамика, и 2) от наличия в ней избыточного кремния, который заметно упрочняет материал. Результаты объясняются различным химическим составом исходного дерева, а также присутствием пор и других дефектов структуры, которые в той или иной степени могут влиять на механические свойства исследованных материалов. При этом во всех материалах адсорбция-десорбция молекул внешней среды в значительной степени определяет действующие величины модуля Юнга и декремента акустических колебаний.

Список литературы

- Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez. ΦΤΤ 45, 3, 456 (2003).
- [2] Б.К. Кардашев, Ю.А. Буренков, Б.И. Смирнов, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 46, 10, 1811 (2004).

1621

- [3] Б.К. Кардашев, Ю.А. Буренков, Б.И. Смирнов, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 47, 5, 816 (2005).
- [4] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Ceram. Technol. 1, 1, 1 (2004).
- [5] H. Robbins, B. Schwartz. J. Electrochem. Soc. 106, 6, 505 (1959).
- [6] M. Singh. Ceram. Eng. Sci. Proc. 21, 4, 39 (2000).
- [7] F.M. Varela-Feria. Ph.D. Thesis, Universidad de Sevilla (2004).
- [8] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.
- [9] V.M. Chernov, B.K. Kardashev, L.M. Krjukova, L.I. Mamaev, O.A. Plaksin, A.E. Rusanov, M.I. Solonin, V.A. Stepanov, S.N. Votinov, L.P. Zavialsky. J. Nucl. Mater. 257, 263 (1998).
- [10] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, D. Singh, K.C. Goretta, A.R. de Arellano-Lopez. ΦΤΤ 43, 11, 2010 (2001).