Мессбауэровское исследование керамик HgBa₂Ca_{n-1}Cu_nO_{2n+2}

© В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Поступила в Редакцию 2 февраля 1999 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопах ⁶⁷Cu(⁶⁷Zn), ¹³³Ba(¹³³Cs) и ¹⁹⁷Hg(¹⁹⁷Au) определены параметры тензора градиента электрического поля в узлах меди, бария и ртути решеток HgBa₂Ca_{n-1}Cu_nO_{2n+2} (n = 1, 2, 3), а также рассчитаны указанные параметры в приближении точечных зарядов. Анализ полученных величин с привлечением литературных данных по ядерному магнитному резонансу на изотопе ⁶³Cu показал, что согласование экспериментальных и расчетных параметров достигается, если предположить, что дырки, появляющиеся в результате дефектности материала, локализуются преимущественно в подрешетке кислорода, находящегося в одной плоскости с атомами меди (для HgBa₂Ca₂Cu₃O₈ — в одной плоскости с атомами Cu(2)).

Соединения HgBa₂Ca_{n-1}Cu_nO_{2n+2} (HgBaCaCuO) (n = 1, 2, 3) являются материалами с рекордно высокими значениями температуры перехода в сверхпроводящее состояние T_c , поэтому актуальной является проблема определения в решетках HgBaCaCuO зарядовых состояний атомов кислорода, которые и ответственны за явление высокотемпературной сверхпроводимости в этих керамиках. В настоящей работе для определения зарядового состояния атомов в решетках HgBaCaCuO используется метод эмиссионной мессбауэровской спектроскопии (ЭМС) на изотопах 67 Cu(67 Zn), 133 Ba(133 Cs) и 197 Hg(197 Au).

Мессбауэровские источники HgBa₂Ca_{n-1}⁶⁷Cu_nO_{2n+2} и ¹⁹⁷HgBa₂Ca_{n-1}Cu_nO_{2n+2} готовились путем диффузионного легирования соединений HgBa₂Ca₂Cu₃O₈ (1223) ($T_c = 112$ K), HgBa₂CaCu₂O₆ (1212) ($T_c = 93$ K) и HgBa₂CuO₄ (1201) ($T_c = 79$ K) радиоактивными изотопами ⁶⁷Cu и ¹⁹⁷Hg при 450°C в течение 2 часов в атмосфере кислорода. Радиоактивный изотоп ¹³³Ba вводился в состав керамик HgBa₂Ca_{n-1}Cu_nO_{2n+2} в процессе синтеза. Мессбауэровские спектры ⁶⁷Cu(⁶⁷Zn) и ¹³³Ba(¹³³Cs) измерялись при 4.2 K с поглотителями соответственно ⁶⁷ZnS и CsCl. Мессбауэровские спектры

¹⁹⁷Hg(¹⁹⁷Au) измерялись при 80 K с поглотителем в виде металлического золота. Типичные спектры приведены на рис. 1–3, а результаты их обработки сведены в таблице.

Предполагалось, что в процессе диффузионного легирования материнские изотопы ⁶⁷Cu, ¹³³Ba и ¹⁹⁷Hg занимают соответственно медные, бариевые и ртутные узлы решеток. При этом дочерние изотопы ⁶⁷Zn, ¹³³Cs и ¹⁹⁷Аи также оказываются в указанных узлах решеток. Поскольку во всех решетках HgBaCaCuO атомы бария и ртути занимают единственные позиции [1,2], то ожидалось, что мессбауэровские спектры ¹³³Ва(¹³³Сs) и ¹⁹⁷Hg(¹⁹⁷Au) будут отвечать единственному состоянию соответствующих зондов. Как видно из рис. 2 и 3, именно это и наблюдается в экспериментальных спектрах. В соединениях (1201) и (1212) атомы меди также занимают единственные позиции [1,2], и в соответствии с этим спектры ⁶⁷Cu(⁶⁷Zn) этих соединений отвечают единственному состоянию зонда 67 Zn (рис. 1, a, b). Наконец, в решетке (1223) атомы меди занимают две кристаллографически неэквивалентные позиции [2], и мессбауэровские спектры ⁶⁷Cu(⁶⁷Zn) этой керамики отвечают двум состояниям мессбауэровского зонда ⁶⁷Zn, находящегося в позициях Cu(1) и Cu(2) (рис. 1, c).

Соединение	Узел	Зонд	C(Zn)	η	C(Cs)	C(Au)	V_{zz}	
							Α	В
HgBa ₂ CuO ₄	Cu	⁶⁷ Zn	14.0(5)	$\leqslant 0.2$			0.858	0.737
	Ba	¹³³ Cs			≤ 40		0.080	0.076
	Hg	¹⁹⁷ Au				262(6)	-1.078	-1.032
HgBa2CaCu2O6	Cu	⁶⁷ Zn	14.5(5)	$\leqslant 0.2$			0.937	0.753
	Ba	¹³³ Cs			≤ 40		0.088	0.093
	Hg	¹⁹⁷ Au				268(6)	-1.100	-0.961
HgBa ₂ Ca ₂ Cu ₃ O ₈	Cu(1)	⁶⁷ Zn	18.0(5)	$\leqslant 0.2$			1.010	1.006
	Cu(2)	⁶⁷ Zn	14.6(5)	$\leqslant 0.2$			0.931	0.766
	Ba	¹³³ Cs			≤ 40		0.064	0.071
	Hg	¹⁹⁷ Au				264(6)	-1.138	-1.010

Параметры ядерного квадрупольного взаимодействия зондов ⁶⁷Zn, ¹³³Cs и ¹⁹⁷Au в катионных узлах решеток HgBa₂Ca_{n-1}Cu_nO_{2n+2}

Примечание. *С* — постоянные квадрупольного взаимодействия (МНz), η — параметр асимметрии, V_{zz} — главная компонента тензора кристаллического градиента электрического поля для моделей *A* и *B* (e/Å³).

Рис. 1. Мессбауэровские спектры 67 Cu(67 Zn) соединений (1201) (*a*), (1212) (*b*) и (1223) (*c*). Показано положение компонент квадрупольных триплетов, отвечающих центрам 67 Zn²⁺ в узлах меди.

Рис. 2. Мессбауэровские спектры ¹³³Ва(¹³³Сs) соединений (1201) (*a*), (1212) (*b*) и (1223) (*c*).

Локальная симметрия всех узлов решеток HgBaCaCuO ниже кубической, и взаимодействие квадрупольного момента ядра-зонда *eQ* с градиентом электрического поля (ГЭП) приводит к расщеплению

Рис. 3. Мессбауэровские спектры 197 Hg(197 Au) соединений (1201) (*a*), (1212) (*b*) и (1223) (*c*). Показано положение компонент квадрупольных дублетов, отвечающих центрам 197 Au в узлах ртути.

мессбауэровского спектра на несколько компонент. В случае изотопа ⁶⁷Zn экспериментальный спектр расщепляется на три компоненты, и из спектра оказывается возможным определить величину постоянной квадрупольного взаимодействия для зонда ⁶⁷Zn $C(Zn) = eQU_{zz}/h$, ее знак и параметр асимметрии тензора ГЭП η , причем измеренная величина eQU_{zz} представляет собой сумму двух членов

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R_0)W_{zz}, \qquad (1)$$

где U_{zz} , V_{zz} , W_{zz} — главные компонены тензоров суммарного, кристаллического и валентного ГЭП, γ , R_0 — коэффициенты Штернхеймера атома-зонда.

После радиоактивного распада материнского изотопа 67 Си дочерний атом цинка стабилизируется в двухвалентном состоянии (единственно возможное валентное состояние цинка в оксидных системах), причем для зонда 67 Zn²⁺ вкладом в тензор суммарного ГЭП от валентных электронов можно пренебречь, тогда

$$C(\operatorname{Zn}) \approx eQ(1-\gamma)V_{zz}/h.$$
 (2)

Тензор кристаллического ГЭП можно рассчитать в рамках модели точечных зарядов, так что, сравнивая экспериментальные C(Zn) и расчетные $eQ(1 - \gamma)V_{zz}$ величины, оказывается возможным определить эффективные заряды атомных центров в узлах кристаллической решетки.

Рис. 4. Фрагменты элементарных ячеек соединений (1201) (a), (1212) (b) и (1223) (c).

Мы провели расчет тензоров кристаллического ГЭП в узлах решеток HgBaCaCuO, при этом решетки представлялись в виде суперпозиции нескольких подрешеток

$$\label{eq:Hg} \begin{split} & [Hg][Ba_2][Cu][O(1)_2][O(2)_2], \\ & [Hg][Ba_2][Ca][Cu_2][O(1)_4][O(2)_2], \\ & Hg][Ba_2][Ca_2][Cu(1)][Cu(2)_2][O(1)_2][O(2)_4][O(3)_2]. \end{split}$$

100 100 (1) 100 (0) 1

Фрагменты элементарных ячеек соединений HgBaCaCuO приведены на рис. 4. При расчетах использовались структурные данные [1,2]. Тензоры решеточных сумм во всех узлах оказались диагональными в кристаллографических осях и аксиальносимметричными.

Если использовать для центров ${}^{67}\text{Zn}^{2+}$ значения $\gamma = -12.2$ [3] и Q = 0.17b [4], то для модели A, соответствующей стандартным валентным состояниям атомов (Hg²⁺, Ba²⁺, Ca²⁺, Cu²⁺, O²⁻), получим

для решетки HgBa₂Ca₂Cu₃O₈ для узлов Cu(1) следующее значение: $eQ(1 - \gamma)V_{zz1} \approx 79$ MHz и для узлов Cu(2) — $eQ(1 - \gamma)V_{zz2} \approx 72$ MHz. Эти значения существенно отличаются от экспериментальных величин C(Zn) для узлов Cu(1) [C(Zn1)] и Cu(2) [C(Zn2)]. Чтобы исключить ошибку, связанную с неправильным выбором значения γ , можно сравнивать отношения S = C(Zn1)/C(Zn2) = 1.23(8) и $s = V_{zz1}/V_{zz2} = 1.08$. Но и в этом случае имеется существенное расхождение между измеренными и рассчитанными величинами. Аналогичные расхождения наблюдаются и для остальных соединений.

Природа этих расхождений может быть установлена на основе совместного анализа данных ЭМС на изотопе 67 Cu(67 Zn) и данных ЯМР на изотопе 63 Cu для узлов меди в решетках металлоксидов меди. На рис. 5, *а* приведена диаграмма C(Cu)-C(Zn), построенная в [5].

Рис. 5. *а* — диаграмма C(Cu) - C(Zn) для соединений двухвалентной меди (сплошная прямая). *b* — диаграмма $C(Cu) - V_{zz}$ для соединений двухвалентной меди. Точками представлены данные: *I* — Cu в (1201), *2* — Cu в (1212), *3* — Cu(1) в (1223), *4* — Cu(2) в (1223). Индексы *A* и *B* обозначают модели расчета V_{zz} .

Для двухвалентных соединений меди экспериментальные данные укладываются на прямую

$$C(Cu) = 197 - 11.3 C(Zn), \qquad (3)$$

где C(Cu) и C(Zn) даны в MHz.

Основная причина отклонения экспериментальных данных от прямой (3) — отличие валентности меди от +2.

Дополнительную информацию о валентном состоянии атомов меди можно получить из диаграммы $C(\text{Cu})-V_{zz}$ (рис. 5, *b*). По оси абсцисс этой диаграммы отложены рассчитанные главные компоненты тензора кристаллического ГЭП V_{zz} для позиций меди, в которых методом ЯМР ⁶³Си измерены $C(\text{Cu})-V_{zz}$ описывается выражением

$$C(\mathrm{Cu}) = 179 - 191.4 V_{zz}, \tag{4}$$

где C(Cu) дана в MHz, а V_{zz} — в е/Å³.

Для диаграммы $C(Cu) - V_{zz}$ существует еще одна причина отклонения от прямой (4) — неправильный расчет тензора ГЭП из-за несовершенства выбора зарядов атомов.

Данные ЯМР ⁶³Си для соединений (1201) [6], (1212) [7] и (1223) [8] вместе с нашими данными ЭМС ⁶⁷Сu(⁶⁷Zn) приведены на диаграмме C(Cu)-C(Zn) (рис. 5, *a*). Видно, что все точки удовлетворительно соответствуют соотношению (3), т.е. медь в соединениях HgBaCaCuO двухвалентна.

Отсутствует согласие с линейной зависимостью (4) на диаграмме $C(Cu) - V_{zz}$ (рис. 5, b), если расчет V_{zz} проводился в предположении стандартных зарядов атомов (модели А). Очевидно, что отклонения данных от линейной зависимости (4) следует объяснить несовершенством выбора модели для расчета V_{zz}. В пользу такого вывода свидетельствует и существенная разница в величинах S = C(Zn1)/C(Zn2) и $s = V_{zz1}/V_{zz2}$. Согласование реализуется для моделей типа В: для соединений (1201) и (1212) необходимо локализовать на атомах O(1) дырки, а для соединения (1223) дырки необходимо локализовать в подрешетке атомов О(2). Для исследованных соединений дырки могут появиться за счет стабилизации части атомов ртути в одновалентном состоянии. При расчетах тензора ГЭП в моделях В предполагалось, что в соединениях (1201), (1212) и (1223) в одновалентном состоянии находится соответственно 30, 90 и 80% атомов ртути. Для модели В уменьшается и расхождение между величинам S и s. Однако отметим, что данные фотоэлектронной спектроскопии (см., например, [9]) не подтверждают стабилизацию ртути в одновалентном состоянии и не исключено, что для объяснения появления в подрешетках кислорода дырок необходимо учитывать дефектность материала.

В случае спектроскопии на изотопе ¹⁹⁷Hg(¹⁹⁷Au) взаимодействие квадрупольного момента ядра ¹⁹⁷Au с ГЭП приводит к расщеплению мессбауэровского спектра на две компоненты с расстоянием между ними $QS = (1/2)|eQU_{zz}|(1 + \eta^2/3)^{1/2}$, поэтому из экспериментального спектра нельзя раздельно рассчитать *C* и η , а также нельзя определить знак *C*. Кроме того, мессбау-

Рис. 6. Диаграммы IS-QS для соединений одновалентного (Au–I) и трехвалентного (Au–III) золота (экспериментальные значения для различных соединений золота, представленные черными квадратами, взяты из [10]). Данные для соединений HgBa₂CuO₄, HgBa₂CaCu₂O₆ и HgBa₂Ca₂Cu₃O₈ представлены в виде светлых квадратов (эти данные совпадают).

эровская спектроскопия на изотопе ¹⁹⁷Au не позволяет только по величине изомерного сдвига IS идентифицировать валентное (зарядовое) состояние атомов золота. Однако, как показано в [10], такая идентификация может быть проведена при совместном анализе величин изомерных сдвигов и квадрупольных расщеплений мессбауэровских спектров ¹⁹⁷Аи. В частности, на рис. 6 представлены диаграммы IS-QS для соединений одновалентного и трехвалентного золота, из которых видно, что данные для соединений HgBaCaCuO хорошо согласуются с данными для соединений трехвалентного золота. Иными словами, после распада материнского изотопа ¹⁹⁷Hg дочерние атомы ¹⁹⁷Аи стабилизируются в узлах ртути решеток HgBaCaCuO формально в трехвалентном состоянии. Поскольку ион Au³⁺ не является кристаллическим зондом, то из полученных величин QS невозможно оценить вклад в суммарный ГЭП на ядрах ¹⁹⁷Au от кристаллической решетки. Однако учитывая, что для ртутных узлов расчеты тензора ГЭП дают $\eta = 0$, можно определить постоянную квадрупольного взаимодействия для зонда ¹⁹⁷Au как |C(Au)| = 2QS (см. таблицу). Далее следует обратить внимание на тот факт, что величины C(Au) для всех соединений HgBaCaCuO очень близки (см. таблицу) и это согласуется с результатами расчета величин V₇₇ для узлов ртути в моделях В.

Очевидно, что существует непосредственная связь между валентными состояниями материнского (¹⁹⁷Hg) и дочернего (197 Au) атомов: после электронного за-хвата в 197 Hg⁺ и 197 Hg²⁺ образуются соответственно ¹⁹⁷Аи⁺ и ¹⁹⁷Аи²⁺. Однако состояние Аи²⁺ является неустойчивым и оно диспропорционирует на стабильные состояния Au⁺ и Au³⁺, причем соотношение количеств одно- и трехвалентного золота определяется типом и концентрацией носителей тока в материале. Поскольку для керамик HgBaCaCuO типичной является проводимость дырочного типа, то присутствие в эмиссионных мессбауэровских спектрах ¹⁹⁷Hg(¹⁹⁷Au) только трехвалентного золота свидетельствует, очевидно, о двухвалентном состоянии атомов ртути. Это находится в согласии с данными фотоэлектронной спектроскопии [9] и является дополнительным свидетельством в пользу существования в соединениях HgBaCaCuO неконтролируемых дефектов, приводящих к локализации дырок в подрешетках кислорода.

Наконец, в случае спектроскопии на изотопе ¹³³Ва(¹³³Сs) экспериментальные спектры представляют собой одиночные линии без проявления тонкой структуры и возможна лишь оценка величин постоянной квадрупольного взаимодействия |C(Cs)| для зонда ¹³³Cs. Этот факт может быть объяснен малой величиной V_{zz} в узлах бария для всех соединений HgBaCaCuO (см. таблицу).

Работа поддержана Российским фондом фундаментальных исследований (грант № 97-02-16216).

Список литературы

- [1] J.L. Wagner, P.G. Radaelli, D.G. Hinks, J.D. Jorgensen, J.F. Mitchell, B. Dabrowski, G.P. Knapp, M.A. Beno, Physica C210, 447 (1993).
- [2] L.W. Finger, R.M. Hazen, R.T. Downs, R.L. Meng, C.W. Chu. Physica C226, 216 (1994).
- [3] R. Sternheimer. Phys. Rev. 146, 140 (1966).
- [4] A. Forster, W. Potzel, G. M. Kalvius. Z. Phys. B37, 209 (1980).
- [5] В.Ф. Мастеров, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин. ФТТ 37. 3400 (1995).
- T. Machi, R. Usami, H. Yamauchi, N. Koshizuka, H. Yasuoka. [6] Physica C235-240, 1675 (1994).
- M. Horvatic, C. Berhier, P. Garretta, J.A. Gillet, P. Segransan, [7] Y. Berthier, J.J. Capponi. Physica C235-240, 1669 (1994).
- K. Magishi, Y. Kitaoka, G.-q. Zheng, K. Asayama, K. Tokiwa, A. Ivo, H. Ihara, Phys. Rev. B53, R8906 (1996).
- [9] R.P. Vasquez, M. Rupp, A. Gupta, C.C. Tsuei. Phys. Rev. B51, 15657 (1995).
- [10] M.O. Faltens, D.A. Shirley. J. Chem. Phys. 59, 5050 (1973).