Магнитострикция в области спин-переориентационных фазовых переходов в монокристалле DyFe₁₁Ti

© С.А. Никитин, И.С. Терешина, Н.Ю. Панкратов

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия E-mail: nikitin@rem.phys.msu.su

(Поступила в Редакцию 17 ноября 1998 г.)

Исследованы полевые, температурные и угловые зависимости продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций монокристалла DyFe₁₁Ti. Измерения проводились тензометрическим методом в интервале температур от 78 до 300 K в магнитных полях до 12 kOe. Из измерений магнитострикции монокристаллов DyFe₁₁Ti, YFe₁₁Ti и LuFe₁₁Ti следует, что подрешетка 3*d* переходного металла вносит малый вклад в магнитострикцию соединений *R*Fe₁₁Ti, а основной вклад в магнитострикцию этих соединений вносит подрешетка редкоземельного металла. Основным микроскопическим механизмом магнитострикции является одноионная магнитострикция, обусловленная взаимодействием анизотропного орбитального электронного облака магнитного иона Dy³⁺ с кристаллическим полем решетки.

Явление спиновой переориентации привлекает в последние годы значительный интерес как физиков-теоретиков для проверки основных положений теоретических моделей [1,2], так и физиков-экспериментаторов ввиду возможных технических приложений этого явления. Ранее явление спиновой переориентации изучалось нами в монокристалле DyFe₁₁Ti с помощью измерения угловых и полевых зависимостей механического вращающего момента, действующего на образец, помещенный в магнитное поле [3]. Было показано, что в данном соединении существуют два спин-переориентационных фазовых перехода (СПП): СПП второго рода при $T_1 = 250$ К и СПП первого рода при $T_2 = 122$ К. Эти данные согласуются с результатами работ [4,5].

Новая информация о характере этих переходов может быть получена при исследовании магнитоупругих эффектов. С этой целью мы провели изучение магнитострикции в области СПП на монокристалле DyFe₁₁Ti с использованием тензометрического метода.

Методика эксперимента

Технология получения монокристаллов и методика измерений магнитострикции описаны ранее в работе [6]. Измерения температурных, полевых и угловых зависимостей магнитострикции проводились нами на монокристаллических образцах в форме дисков диаметром ~ 4 и толщиной ~ 0.5 mm в направлении кристаллографических осей [001] и [100] в магнитных полях до 13 kOe в интервале температур 78–300 К. Абсолютная погрешность измерений магнитострикции составляла 1×10^{-6} .

2. Результаты эксперимента и их обсуждение

На рис. 1 представлены температурные зависимости продольной ($\lambda_{\parallel} > 0$) и поперечной ($\lambda_{\perp} < 0$) магнитострикций. Тензодатчик наклеивался на поверхность диска параллельно оси *с*. Магнитное поле прикладывалось параллельно (λ_{\parallel}) и перпендикулярно (λ_{\perp}) оси **с**. Из рис. 1 видно, что при нагревании образца в интервале температур 78–100 К наблюдается резкий рост $\lambda_{\parallel}(T)$. Максимальное значение магнитострикции достигается в области температур 100-140 К. В этой же области температур наблюдается спин-переориентационный фазовый переход первого рода [3-5]. Согласно нашим данным [3], угол θ (угол между магнитным моментом образца \mathbf{M}_s и осью **c**) при $T_2 = 122$ К изменяется скачком от 90° до 45° (см. вставку на рис. 1). При дальнейшем увеличении температуры угол θ изменяется плавно и при $T_1 \ge 250 \,\mathrm{K}$ он становится равным нулю. Из рис. 1 видно, что продольная магнитострикция в поле Н || с максимальна вблизи Т2. Здесь эффективное поле магнитной анизотропии мало, и внешнее магнитное поле, приложенное по оси с, вызывает поворот магнитных моментов из базисной плоскости ($\theta = 90^{\circ}$) в направлении магнитного поля, что и приводит к сильному росту магнитострикции. При увеличении поля максимум на кривой $\lambda_{\parallel}(T)$ смещается в сторону более низких темпе-

Рис. 1. Температурные зависимости продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций монокристалла DyFe₁₁Ti в различных магнитных полях.

ратур, вследствие того что температура перехода Т₂, повидимому, понижается с ростом поля. Из рис. 1 следует, что в поле 3.5 kOe λ_{\parallel} максимальна при 130 K, а в поле $H = 10 \,\mathrm{kOe}$ этот максимум наблюдается при $T \sim 100 \,\mathrm{K}$. При нагревании образца при *T* > *T*₂ происходит плавный спад λ_{\parallel} , который для всех значений приложенного поля заканчивается при температуре $T_1 = 250$ К. В этой области температур угол θ плавно уменьшается (см. вставку на рис. 1), начиная с температуры T₂ = 122 К. При температуре $T_1 = 250 \,\mathrm{K}$ угол θ становится равным нулю, и λ_{\parallel} принимает очень малые значения при $T > T_1$. Экспериментальные данные (рис. 1) свидетельствуют о фазовом переходе второго рода вблизи Т₁, где магнитные моменты плавно разворачиваются по направлению к оси с. При $T_1 > 250 \text{ K} \text{ M}_s \parallel c$, поэтому в поле $\mathbf{H} \parallel \mathbf{c}$ процессы вращения магнитного момента не происходят, вследствие чего отсутствует заметный вклад в величину λ_{\parallel} .

Поперечная магнитострикция λ_{\perp} , измеренная вдоль оси с в поле Н || с, практически отсутствует в интервале температур 80-140 К (см. рис. 1). Здесь поле, направленное вдоль оси легкого намагничивания, индуцирует только процессы смещения доменных границ 180-градусных доменов, которые не вносят вклада в поперечную магнитострикцию вследствие четного характера этого эффекта. При T > 140 К возникает отрицательная магнитострикция λ_{\perp} . Здесь магнитный момент М_s выходит из базисной плоскости, образуя с ней угол $(\pi/2 - \theta)$. Под действием поля **H** \perp **c** происходит поворот М_s в направлении базисной плоскости, вследствие чего возникает заметная по величине магнитострикция вращения λ_{\perp} . Она возрастает по абсолютной величине при *T* > 140 K, достигает максимума в области $T \sim 250 \,\mathrm{K}$, а затем плавно уменьшается.

Спонтанная магнитострикция вдоль оси с (самопроизвольная магнитострикционная деформация образца) кристалла с тетрагональной кристаллической решеткой может быть рассчитана по формуле [7]

$$\lambda_c = \lambda_2^{\alpha,0} + \lambda_2^{\alpha,2} (\cos^2 \theta - 1/3), \tag{1}$$

где $\lambda_2^{\alpha,0}$ и $\lambda_2^{\alpha,2}$ — магнитострикционные константы, а θ — угол, который образует магнитный момент \mathbf{M}_s с тетрагональной осью **с**. В поле $\mathbf{H} \parallel \mathbf{c}$ достаточным по величине для ориентации \mathbf{M}_s вдоль оси **с**, спонтанная магнитострикция становится равной

$$\lambda_c\big|_{\theta=0} = \lambda_2^{\alpha,0} + 2/3\lambda_2^{\alpha,2}.$$
 (2)

Следовательно, индуцированная полем продольная магнитострикция вдоль оси **с**, обусловленная процессами вращения, будет равна

$$\lambda_{\parallel c} = \lambda_c - \lambda_c \big|_{\theta=0} = -\lambda_2^{\alpha,2} (1 - \cos^2 \theta).$$
 (3)

Из формулы (1) также следует, что при процессах вращения поперечная магнитострикция λ_{\perp} , измеренная вдоль оси **с** в поле **H** || **с**, равна

$$\lambda_{\perp c} = \lambda_c - \lambda_c \big|_{\theta = \pi/2} = \lambda_2^{\alpha, 2} \cos^2 \theta.$$
 (4)

Построенные по теоретическим формулам (3) и (4) величины $\lambda_{\parallel c}$ и $\lambda_{\perp c}$ представлены на рис. 2. Значения угла θ принимались равными тем, которые были определены в нашей работе [3]. Видно, что наблюдается соответствие между теорией и экспериментом. Это позволяет сделать вывод о том, что магнитострикция в DyFe₁₁Ti в области СПП обусловлена процессами вращения магнитострикционной константы $\lambda_2^{\alpha,2}$, найденное из зависимостей $\lambda_{\parallel c}$ и $\lambda_{\perp c}$ от температуры и угла θ , равно $\lambda_2^{\alpha,2} \sim -1 \cdot 10^{-4}$, что совпадает с результатами ее определения по тепловому расширению [5].

На рис. 3 представлены полевые зависимости продольной магнитострикции $\lambda_{\parallel}(H)$ для соединения DyFe₁₁Ti.

Рис. 2. Температурные зависимости продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций монокристалла DyFe₁₁Ti в магнитном поле H = 10 kOe в области СПП и теоретические кривые, полученные по формулам (3) и (4).

Рис. 3. Изотермы продольной магнитострикции λ_{\parallel} в монокристалле DyFe₁₁Ti. *T*, K: *I* — 78, *2* — 86, *3* — 100, *4* — 143, *5* — 158, *6* — 190, *7* — 221, *8* — 236.

80

Рис. 4. Угловая зависимость магнитострикции в монокристалле DyFe₁₁Ti в плоскости (100) при T = 128 K, измеренная в магнитном поле $\mathbf{H} = 11$ kOe (черные кружки) и теоретическая кривая, полученная по формуле (5).

Из рис. З видно, что при температурах T = 78 и 86 К отсутствует насыщение на изотермах магнитострикции $\lambda_{\parallel}(H)$, что указывает на большую величину магнитной анизотропии. Далее при T > 120 К в районе СПП, где значение эффективного поля магнитной анизотропии уменьшается, кривые $\lambda_{\parallel}(H)$ обнаруживают тенденцию к насыщению. Обращает на себя внимание наличие пороговых полей H_{thr} , начиная с которых происходит резкий рост $\lambda_{\parallel}(H)$ в интервале температур 78–100 К, поскольку при $H > H_{\text{thr}}$ магнитный момент \mathbf{M}_s соединения начинает отклоняться к оси с. Из рис. З видно, что чем выше температура, тем меньше значение порогового поля.

Исследование угловых зависимостей магнитострикции $\lambda(\varphi)$, где угол φ — это угол между направлением измерения магнитострикции (датчик наклеен параллельно оси с) и направлением внешнего магнитного поля, показало, что все кривые имеют период, равный π . Однако форма кривых претерпевает существенную трансформацию с изменением температуры и поля. На рис. 4 показана кривая $\lambda(\varphi)$, измеренная при температуре $T = 128 \,\mathrm{K}$ в поле $H = 11 \,\mathrm{kOe}$. Из рисунка видно, что при всех значениях угла φ магнитострикция $\lambda(\varphi)$ положительная. При повышении температуры, как показали наши измерения, кривые плавно сдвигаются вниз, а при $T > 250 \,\mathrm{K}$ практически переходят в область отрицательных значений, что хорошо коррелирует с зависимостями $\lambda_{\parallel}(T)$ и $\lambda_{\perp}(T)$. Угловая зависимость магнитострикции $\lambda(\varphi)$, измеренной вдоль оси с, может быть описана следующей формулой:

$$\lambda_c(\varphi) = \lambda_2^{\alpha,2} \cos^2 \varphi + \lambda_T(T), \tag{5}$$

где $\lambda_T(T)$ — величина, зависящая от температуры и учитывающая магнитострикционную деформацию за счет теплового расширения и доменной структуры.

Согласно литературным данным [8,9], соединение DyFe₁₁Ti может быть рассмотрено как двухподрешеточный магнетик: при этом обе подрешетки, а именно подрешетка РЗМ и подрешетка 3d переходного металла, вносят свои вклады в магнитострикцию. Нами проведены измерения продольной $\lambda_{\parallel}(T,H)$ и поперечной $\lambda_{\perp}(T,H)$ магнитострикций для монокристаллов YFe₁₁Ti, LuFe₁₁Ti. Ионы иттрия и лютеция не имеют магнитного момента, поэтому полученные результаты давали возможность проанализировать магнитострикцию подрешетки 3d переходного металла. Было установлено, что значение магнитострикции λ для соединений YFe₁₁Ti и LuFe₁₁Ti на порядок величины меньше, чем значения для DyFe₁₁Ti. Следовательно, подрешетка железа вносит ничтожно малый вклад в магнитострикцию в RFe₁₁Ti соединениях. Отсюда можно сделать заключение, что магнитострикция в области спиновой переориентации в монокристалле DyFe11Ti действительно обусловлена вращением магнитного момента подрешетки редкоземельного металла. Основным же микроскопическим механизмом магнитострикции, по-видимому, является одноионная магнитострикция, обусловленная взаимодействием анизотропного орбитального электронного облака магнитного иона Dy³⁺ с кристаллическим полем решетки [7,10]. Аналогичные результаты были получены в работах [11,12] для монокристалла TbFe₁₁Ti.

Таким образом, полученные экспериментальные результаты указывают на существенное влияние СПП и процессов вращения магнитного момента на температурные и полевые и угловые зависимости магнитострикции монокристалла DyFe₁₁Ti.

Работа поддержана Федеральной программой поддержки ведущих научных школ (грант № 96-15-96429) и грантом РФФИ (№ 96-02-18271).

Список литературы

- A.A. Kazakov, N.V. Kudrevatykh. J. Alloys and Comp. 191, 67 (1993).
- [2] M.D. Kuz'min. Phys. Rev. **B46**, 8219 (1992).
- [3] И.С. Терешина, И.В. Телегина, К.П. Скоков. ФТТ 40, 4, 699 (1998).
- [4] B.-P. Hu, H.-S. Li, J.M.D. Coey, J.P. Gavigan. Phys. Rev. B41, 4, 2221 (1990).
- [5] A.V. Andreev, M.I. Bartashevich, N.V. Kudrevatykh, S.M. Razgonyaev, S.S. Sigaev, E.N. Tarasov. Physica B167, 139 (1990).
- [6] V.Yu. Bodriakov, T.I. Ivanova, S.A. Nikitin, I.S. Tereshina. J. Alloys and Comp. 259, 265 (1997).
- [7] С.А. Никитин. Магнитные свойства редкоземельных металлов и их сплавов. Изд-во МГУ, М. (1989). 248 с.
- [8] X.C. Kou, T.S. Zhao, R. Grossinger, H.R. Kirchmayr, X. Li, F.R. de Boer. Phys. Rev. B47, 6, 3231 (1993).
- [9] K.Yu. Guslienko, X.C. Kou, R.J. Grossinger. J. Magn. Magn. Mater. 150, 383 (1995).
- [10] К.П. Белов. Магнитострикционные явления и их технические приложения. Наука, М. (1987). 159 с.
- [11] A.A. Kazakov, N.V. Kudrevatykh, P.E. Markin. JMMM 146, 208 (1995).
- [12] С.А. Никитин, Т.И. Иванова, И.С. Терешина. Неорган. материалы 34, 5, 1 (1998).