Структурное состояние слоев *А*3-нитридов, имплантированных ионами эрбия

© Р.Н. Кютт, Н.А. Соболев, Г.Н. Мосина, Е.И. Шек

Физико-технический институт им. А.Ф Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: rkyutt@mail.ioffe.ru

(Поступила в Редакцию 27 декабря 2005 г.)

Методом рентгеновской дифракции изучена дефектная структура выращенных методом газофазной эпитаксии из металлоорганических соединений сверхрешеток (CP) AlGaN/GaN и слоев GaN до и после имплантации ионов эрбия с энергией 1 MeV и дозой $3 \cdot 10^{15}$ cm⁻², а также после отжига. В CP с общей толщиной больше глубины имплантации при температуре отжига выше 900°C пропадают сателлиты от деформированной части CP, возникшей в зоне действия ионов, т.е. радиационные дефекты, вызывающие положительную деформацию слоя, отжигаются. Однако полного восстановления исходного состояния не происходит даже после отжига при 1050°C, а остающиеся области с положительной деформацией обусловлены остаточными дефектами. Для образцов с тонкими CP, глубина локализации которых находится в области максимума радиационных нарушений, периодическая структура, исчезнувшая после имплантации с дозой $3 \cdot 10^{15}$ cm⁻², не восстанавливается даже после отжига при 1050°C, что следует из вида дифракционных кривых. Этот вывод подтверждается электронно-микроскопическими наблюдениями.

Работа частично поддержана Российским фондом фундаментальных исследований (проект № 03-02-16164), Президиумом РАН (Комплексная программа научных исследований Президиума РАН "Низкоразмерные квантовые структуры") и Отделением физических наук РАН (Научная программа "Новые материалы и структуры").

PACS: 61.72.Dd, 61.72.Ff

1. Введение

Полупроводники, легированные редкоземельными ионами, являются перспективными материалами для создания эффективных светоизлучающих структур с узкой люминесцентной линией, интенсивность и положение которой не зависят от температуры. Недавно впервые что использование сверхрешеток было показано, (CP) AlGaN/GaN позволяет повысить интенсивность фотолюминесценции имплантированных ионов Er³⁺ по сравнению с эпитаксиальными слоями GaN [1]. Для достижения максимальной интенсивности фотолюминесценции необходимо оптимизировать как параметры СР, так и условия постимплантационных отжигов, в процессе которых происходят трансформация структурных дефектов и образование оптически активных центров.

Рентгеновская дифрактометрия является одним из основных методов исследования структуры имплантированных слоев. Методики, разработанные на рубеже 80-х годов, позволяют получить распределение деформации по глубине поверхностного слоя, обусловленное как изменением концентрации примеси, так и радиационных дефектов в зависимости от глубины. Они дают также возможность оценивать степень аморфизации и определять параметры как дефектов, непосредственно созданных при ионной бомбардировке, так и вторичных нарушений, возникших в результате последующих температурных обработок. Однако большинство конкретных исследований относилось к ионно-легированным слоям монокристаллов. В частности, имплантация ионов Ег в кремний рассматривалась в работе [2]. Структурные аспекты и особенности имплантации различных ионов в GaN исследовались в ряде работ (см., например, обзор [3]).

Ионная имплантация в многослойные структуры может обладать рядом особенностей по сравнению с монокристаллами, что связано с существованием границ раздела и наличием слоев разного состава и плотности, поскольку как соотношение между электронным и ядерным торможением, так и число создаваемых радиационных дефектов зависят от материала мишени. Кроме того, процесс дефектообразования при внедрении ионов в сильнонарушенные кристаллы, такие как слои нитридов, выращенные на сапфире, может отличаться от процессов в совершенном монокристалле.

Цель настоящей работы заключается в детальном рентгенодифракционном исследовании эпитаксиальных слоев GaN–CP(AlGaN/GaN)–GaN с различными толщиной и положением CP относительно глубины имплантации ионов Er.

2. Эксперимент

Эпитаксиальные слои GaN–CP(Al_{0.26}Ga_{0.74}N/GaN)– GaN были выращены методом газофазной эпитаксии из металлоорганических соединений на (0001)-сапфировых подложках в одинаковых условиях [1]. Толщина от-

дельных слоев в СР составляла около 5 nm, число периодов было равно 7 и 15 для одной группы образцов (тонкие СР) и 150 для другой группы (толстые СР). Толщина верхнего слоя GaN для тонких СР равнялась 100 nm, для толстых СР он отсутствовал. Для сравнения также исследовались однослойные структуры GaN-сапфир с толщиной слоя 3 µm. Ионы эрбия с энергией $E = 1 \,\text{MeV}$ и дозой $D = 3 \cdot 10^{15} \,\text{cm}^{-2}$ имплантировались при комнатной температуре. Отжиги проводились при температурах 900 и 1050°C в течение 5 min в потоке аргона. Рентгенодифракционные исследования были выполнены на трехкристальном дифрактометре с использованием СиК_α-излучения. Основная информация о структурных параметрах получалась из дифракционных кривых $\theta - 2\theta$ -моды сканирования в симметричной брэгговской геометрии (отражение 0002). Моделирование таких кривых проводилось на основе полукинематического приближения [4] путем суммирования по всем слоям поверхностного слоя (буферного, слоя-крышки, всех субслоев СР), каждый из которых характеризовался толщиной, средней деформацией и эффективным структурным фактором, включающим уменьшение рассеивающей способности за счет дефектов (через статический фактор Дебая-Валлера). Под деформацией і-го слоя понимается изменение $(\Delta d/d)_i = (d_i - d_0)/d_0$ межплоскостного расстояния относительно GaN (буферный слой считается полностью релаксированным). При этом деформация в поверхностном слое после имплантации обусловлена как периодическим распределением состава в СР, так и радиационными дефектами и имплантированной примесью. Дефектная структура изучалась на основе методики определения компонентов микродисторсии по уширению рентгеновских рефлексов [5] и на основе анализа формы дифракционных пиков. С этой целью для некоторых образцов дополнительно измерялись кривые θ-2θ- и θ-сканирования в брэгговской и лауэвской геометрии дифракции.

3. Результаты и их обсуждение

Дифракционные кривые симметричного брэгговского отражения 0002 представлены на рис. 1-3 для трех образцов: с одиночным слоем GaN, с тонкой и толстой СР до (*a*) и после (*b*) имплантации, а также после отжига при температуре 900°С (*c*). Из дифракционных кривых для исходных образцов с СР (рис. 2, *a* и 3, *a*) были определены параметры СР: концентрация алюминия (28.5 at.%), толщина отдельных слоев и степень релаксации решетки. Толщины субслоя оказались равны и составили по 5.5 nm в тонкой и 8.2 nm в толстой СР. Тонкая СР находилась в нерелаксированном состоянии, в то время как для толстой решетки имеет место релаксация относительно буферного слоя.

После имплантации в одиночный слой GaN появляется деформированный слой с большим параметром решетки (дополнительный пик со стороны меньших

Рис. 1. Дифракционные $\theta - 2\theta$ -кривые отражения 0002 для одиночного слоя GaN до (*a*), после (*b*) имплантации и после отжига при 900°С (*c*).

углов на рис. 1, кривая *b*). Это характерно для большинства кристаллических слоев, имплантированных дозами меньше критической дозы аморфизации: положительная деформация обусловлена радиационными дефектами (парами вакансия-междоузлие). Положжение дополнительного пика соответствует средней деформации $(\langle e \rangle = 5 \cdot 10^{-3}).$

Для образца с толстой СР после имплантации на дифракционной кривой сохраняется периодическая структура с сателлитами, угловое положение которых такое же, как и для исходного образца (рис. 2, b). Однако на сателлитах со стороны меньших углов появляются дополнительные пики-наплывы, указанные стрелками на рис. 2, b. Поскольку общая толщина СР значительно превышает глубину имплантации, основная часть СР не нарушается. Но в зоне действия ионов положительная деформация, вызываемая радиационными дефектами, приводит к появлению деформированной СР, периодическая структура которой в целом сохраняется, но рассеяние от нее смещено в сторону меньших углов.

Моделирование дифракционной кривой с учетом параметров реальных СР и примерного распределения деформации в имплантированном слое позволяет воспроизвести экспериментальную зависимость интенсивности (пунктир на рис. 2, b). Здесь и далее в результирующей расчетной кривой эмпирически учитывалось уширение вдоль дифракционного вектора, вызываемое дислокациями, путем свертки расчетной кривой для идеальной СР с гауссовской функцией, соответствующей экспериментально измеренной полуширине пиков $\theta - 2\theta$ -сканирования. Распределение деформации в поверхностном слое, соответствующее наилучшему совпадению расчета и эксперимента, приведено на вставке к рис. 2, b.

Совсем иначе меняется картина дифракции после имплантации в образец с тонкой СР. Из рис. 3, *b* видно, что сателлиты от СР исчезают, остается только пик

Рис. 2. Дифракционные θ —2 θ -кривые отражения 0002 для образца с толстой СР до (*a*), после (*b*) имплантации и после отжига при 900°С (*c*). Сплошные кривые — эксперимент, пунктирные — расчет. На вставке — распределение деформации в поверхностном слое.

от GaN, около которого со стороны меньших углов появляется пик, отвечающий деформированному слою. Такая ситуация может быть объяснена тем, что в данном случае вся СР локализована на глубине расположения максимума радиационных дефектов и должна быть максимально деформирована и нарушена. При этом могут иметь место два механизма исчезновения сателлитов на дифракционной кривой. Во-первых, это нарушение четкой периодичности распределения межплоскостных расстояний в СР, поскольку на него накладывается более плавное и неравномерное по глубине распределение деформации, вызванное радиационными дефектами. Во-вторых, при больших дозах имплантации может наступить аморфизация имплантированного слоя, в первую очередь в области максимума нарушений.

В первом случае, однако, должен сохраняться средний пик отражения от СР, который с увеличением деформации будет смещаться в область меньших углов, чего не

Рис. 3. Дифракционные $\theta - 2\theta$ -кривые отражения 0002 для образца с тонкой СР до (a), после (b) имплантации и после отжига при 900°С (c). Сплошные кривые — эксперимент, пунктирные — расчет. На вставке — распределение деформации в поверхностном слое.

наблюдается в нашем случае (на месте 0-сателлита СР виден лишь слабый максимум-наплыв). Таким образом, исчезновение сателлитов на кривой можно приписать в основном сильным нарушениями (аморфизации) тонкой СР. Что касается пика, появившегося со стороны меньших углов около отражения GaN, то он, скорее всего, обусловлен отражением от слоя-крышки, деформированным в результате имплантации.

Учитывая искажения решетки путем введения статического фактора Дебая–Валлера L_h (так что рассеивающая способность пропорциональна $\exp(-L_h)$), можно подогнать расчетное распределение интенсивности к экспериментальной кривой (пунктир на рис. 3, *b*). Соответствующее расчетной кривой распределение деформации в поверхностном слое приведено на вставке, распределение L_h принималось пропорциональным изменению деформации.

Отметим, что средняя величина деформации в поверхностном слое, определенная из углового положения дополнительных пиков на кривых рис. 1-3, одинакова для всех трех образцов (т.е. как для слоев GaN, так и для СР), из чего следует, что уровень радиационных нарушений и вызываемой ими деформации в субслоях GaN и AlGaN не сильно различается. Разумеется, в нашем случае имплантация в образцы как с тонкой, так и с толстой СР должна приводить к одинаковой степени нарушений и их распределению по глубине, в том числе и к аморфизации внутреннего слоя, попадающего в область максимума нарушений. При моделировании обеих дифракционных кривых закладывались одинаковые профили деформации и статического фактора. Но для образца с толстой СР эта аморфизация никак не влияет на форму кривых. Так что только наличие углубленной тонкой СР позволяет зафиксировать аморфное состояние.

После отжига при температуре 900°С дополнительный пик от деформационного слоя пропадает как для одиночного слоя GaN, так и для CP (рис. 1–3). Таким образом, дефекты, образующиеся в ходе имплантации и вызывающие положительную деформацию слоев, отжигаются. Одако из рис. 1 (кривая c) видно, что полного восстановления решетки не происходит, на что указывает асимметрия распределения интенсивности на хвостах кривой (она больше со стороны меньших углов). Хотя распределение интенсивности в области малых углов немного меняется с увеличением температуры отжига, асимметрия пика сохраняется даже после отжига при T = 1050°C, что свидетельствует о наличии слоя с положительной деформацией, обусловленной, очевидно, остаточными дефектами.

Для образца с тонкой СР после отжига при 900°С на дифракционной кривой исчезает пик от деформированного верхнего слоя-крышки GaN, но ни сателлиты, ни средний пик от СР не появляются (рис. 3, c). Это означает, что в области локализации СР (на глубине $0.1-0.2\,\mu$ m) монокристаллическая структура не восстанавливается. После отжига при более высокой темпера-

Рис. 4. Электронно-микроскопическое изображение поперечных срезов образца с тонкой СР до имплантации (*a*), а также после имплантации и отжига при 1050°С (*b*).

туре форма дифракционной кривой не изменяется, т.е. температуры отжига в 1050°С для этого недостаточно.

Данный вывод подтверждается и электронно-микроскопическим изображением поперечных срезов этого образца (рис. 4, *a*, *b*). На снимке, полученном от исходного образца, хорошо видна СР из семи периодов с дислокациями, прорастающими из буферного слоя. На изображении поперечного сечения образца после имплантации и отжига при 1050°С на месте СР и слоя-крышки виден сильно нарушенный (поликристаллический или аморфный) слой лишь с небольшими кристаллическими участками.

Полученные данные показывают, что для восстановления нарушенных в результате имплантации слоев GaN требуются значительно бо́льшие температуры по сравнению с отжигом, например, кремния или арсенида галлия, где уже при $T = 500^{\circ}$ С начинается твердофазная рекристаллизация аморфизованных слоев. Однако наши данные находятся в согласии с результатами других исследований структуры GaN после ионной имплантации и отжига. В частности, показано, что обработка при температуре ниже 1150°С приводит к отжигу радиационных дефектов лишь в случае их небольшой плотности (т.е. при малых дозах имплантации) [3,6]. В нашем случае это относится как раз к областям

h

Образец		Дислокации			
		Прорастающие винтовые	Прорастающие краевые	Краевые в мало- угловых границах	Горизонтальные
Одиночный слой GaN		4.7	18	12	2.5
Образец с тонкой СР		3.0	9.1	17	2.0
Образец с толстой СР	GaN	6.1	10	10	2.5
	SL(0)	5.4	9	25	7.5

Плотности дислокаций в слоях GaN и сверхрешетке AlGaN, полученные из рентгенодифракционных данных (в единицах 10⁸ cm⁻²)

кристалла, попадающим, на переднее или заднее крыло профиля имплантации, с чем и связано исчезновение пиков от деформационных слоев на кривых после отжига (рис. 1–3). Протяженные дефекты, образующиеся после имплантации большими дозами ($\sim 10^{15}$ cm⁻²), не отжигаются даже при температурах 1400–1500°C [6]. Для слоев, аморфизованных в результате имплантации, восстановления первоначальной структуры не наблюдалось. Отмечается, что при низкотемпературных обработках происходит поликристаллизация аморфных слоев, твердофазной эпитаксиальной рекристаллизации не наблюдается даже при очень высоких температурах отжига.

Рис. 5. Форма пика *θ*-сканирования для неимплантированного слоя GaN (1) и после имплантации (2).

Эпитаксиальные слои A3-нитридов, выращенные на сапфире, являются сильнонарушенными структурами с большой плотностью прорастающих дислокаций. Эти дислокации зарождаются на границе подложки и буферного слоя и прорастают сквозь СР (это можно видеть на электронно-микроскопическом изображении, показанном на рис. 4, a). Значения плотности отдельных семейств дислокаций, определенные на основе анализа уширений рентгенодифракционных пиков, приведены в таблице. Имплантация, очевидно, не приводит к изменению этой дислокационной структуры в тех областях, где не наступает аморфизации. Во всяком случае, это можно с уверенностью сказать о винтовых прорастающих дислокациях, определяющих полуширину пика θ -сканирования для брэгговского отражения, которая одинакова как для отражения от буферного слоя, так и для отражения от поверхностного слоя, деформированного после имплантации (рис. 5). Однако θ -пик от имплантированного слоя имеет более протяженные хвосты или, если использовать аппроксимацию с помощью функции Войта, бо́льшую лоренцевскую составляющую. Это указывает на присутствие диффузного рассеяния, вызванного другими (кроме дислокаций) дефектами в имплантированном слое.

4. Заключение

Таким образом, в результате рентгенодифракционного исследования СР AlGaN/GaN, имплантированных ионами Ег, показано, что для образцов с СР с общей толщиной, большей глубины имплантации, в поверхностном слое возникает деформированная периодическая структура с большим параметром решетки. В образцах с тонкой СР, локализованной на глубине максимума профиля имплантации, периодическая структура исчезает, что указывает на аморфизацию в области локализации СР. Деформированные слои восстанавливаются после температурной обработки при 900°С, однако аморфный слой не восстанавливается даже после отжига при 1050°С.

Список литературы

- N.A. Sobolev, A.M. Emel'yanov, V.I. Sakharov, I.T. Serenkov, E.I. Shek, A.I. Besyul'kin, W.V. Lundin, N.M. Shmidt, A.S. Usikov, E.E. Zavarin. Physica B 340–342, 1108 (2003).
- [2] Р.Н. Кютт, Н.А. Соболев. ФТТ 39, 853 (1997).
- [3] S.O. Kucheev, J.S. Williams, S.J. Pearton. Mater. Sci. Eng. R-Rep. **33**, 51 (2001).
- [4] R.N. Kyutt, P.V. Petrashen', L.M. Sorokin. Phys. Stat. Sol. (a) 60, 381 (1980).
- [5] V.V. Ratnikov, R.N. Kyutt, T.V. Shubina, T. Pashkova, B. Monemar. J. Appl. Phys. 88, 6252 (2000).
- [6] S.O. Kucheev, J.S. Williams, C. Yagadashi, J. Zou, G. Li. Phys. Rev. B 62, 7510 (2000).