Аномалии распространения звука и фазовая диаграмма сплавов хрома

© А.И. Мицек, Т.В. Голуб

Институт металлофизики Академии наук Украины, 252680 Киев, Украина E-mail: golub@imag.kiev.ua

(Поступила в окончательном виде 1 февраля 1999 г.)

Результаты расчетов комплексных упругих модулей $\hat{C}(T)$ в разбавленных сплавах Cr сравниваются с данными измерений скорости и затухания звука в окрестности T_N и при высоких температурах $T > T_N$ (T_N — температура Несля). Термодинамический расчет основан на модели ковалентной связи 3d-ионов, находящихся в состоянии с разными числами n ковалентных электронов. Параметры косвенного обмена $A_{ij}^{(n)}$ между ионами i- и j-подрешеток выражаются через энергии ковалентной связи $\Gamma_{ij}^{(n)}$. Устойчивость волн зарядовой и спиновой плотностей (ВЗП и ВСП) находится вариационным методом и определяется дисперсией $\Gamma_{ij}^{(n)}$ и кулоновскими параметрами U_n . Для малого вектора структуры **Q** на фазовой диаграмме существует суперантиферромагнитная фаза (САФМ) при $T_N < T \leq 2T_N$. Пик дефекта модуля $|\Delta E(T)|$ и затухания звука $\Delta_h(T_N)$ в окрестности перехода I рода ВСП–САФМ определяется переходной доменной структурой. Измерения аномального роста E(T) при $T > T_N$ позволяют в рамках теории САФМ определить константы магнитострикции $\lambda(T)$ сплавов Се в фазе САФМ.

1. Неоднородность спиновой структуры Cr и его сплавов

Металлический Cr отличается своими свойствами от металлов тяжелой половины 3*d*-группы (Mn, Fe, Co, Ni). Его хрупкость, коррозионная стойкость и т.п., возможно, связаны с переменной валентностью атома Cr $(3d^54s^1)$. Открытие волны спиновой плотности (ВСП) в Cr и его сложной доменной структуры (см. [1]) объяснило наличие особых температурных точек $T = T_{SF} \cong 120$ и $T_N \cong 310 \,\mathrm{K}$ на фазовой диаграмме Cr. Поскольку в состоянии ВСП имеется 2 параметра спинового порядка (амплитуда ВСП S_w ($S_w \cong 1/2$) и вектор структуры Q ($|q| \sim 0.1$)), направления которых вдоль осей типа [100] совпадают при *T* < *T*_{SF} либо ортогональны при $T_N > T > T_{SF}$, параметры доменных стенок (энергии и толщины) разного типа отличаются по порядку величины [2]. Добавление небольших концентраций примесей $X (c_x \le 10^{-2})$ подавляет ВСП и переводит сплав Cr-X в состояние соизмеримое (неелевское) на линии $c_x(T_{1C})$. В результате этого концентрационного перехода резко (иногда в 2 раза) возрастает температура Нееля T_N , см. [3]. Меняется также род перехода (в чистом Cr и его сплавах с ВСП — переход I рода в окрестности T_N).

Это позволило предположить, что при $T > T_N$ подавление ВСП сопровождается локальной "гомогенизацией" спиновой плотности, которая образует кластеры с антиферромагнитной (АФМ) неелевской структурой, см. [2,4]. Это неоднородное, суперантиферромагнитное (САФМ) состояние существует при температурах $T_N < T \lesssim 2T_N$.

Наиболее яркие аномалии: глубокий минимум ~ 10^{-1} скорости звука (упругого модуля $C_{11}(T)$) и рост $C_{11}(T)$ в области $T_N < T \leq 2T_N$, а также пик поглощения вблизи T_N (как и в окрестностях других переходов: T_{SF} , T_{1C} [1,2]. Предполагаем, что эти аномалии связаны

с неоднородной спиновой структурой, в частности с переходной доменной структурой и кластерами САФМ.

Необычные для типичных металлов механические и другие свойства Cr (при хорошей металлической электропроводности, хотя и значительно меньшей (в 2–3 раза при 300 K), чем у Co или Fe) указывают на уменьшение роли металлической связи (зонных электронов). Соответственно возрастает роль ковалентных связей. Это уменьшает вероятность применимости простой зонной модели ВСП (Оверхаузера и др.), см. [1], к сплавам Cr. Более вероятной представляется периодичность, обусловленая неоднородностью распределения ковалентных 3*d*-электронов.

Следует обсудить также применение "параметра Грюнайзена" Фосетом и др. [5], для описания магнитного состояния Cr. Исходная теория Грюнайзена [6] для идеального (дебаевского) газа фононов была обобщена на газ фероомагнонов [7]. Попытка [5] получить "правило Грюнайзена" в виде соотношения упругих модулей, теплоемкости и других (иногда произвольно выбранных) характеристик, привела к разным (даже по знаку) "параметрам Грюнайзена" для Cr при $T \ll T_N$ и $T \cong T_N$. Из результатов [6,7] видно, что для наличия константы Грюнайзена (упругой и магнитной) необходима применимость модели газа элементарных упругих (фононов) или спиновых (магнонов) возбуждений. В случае Cr это условие [6,7] не выполняется, поэтому введение "параметра Грюнайзена" не обосновано. Использование его для интерпретации экспериментальных данных в сплавах Cr приводит к противоречиям.

При построении фазовых диаграмм металлов, в частности магнитных деталей фазовых диаграмм, необходимо тщательно учитывать роль локализованных (магнитных и ковалентных) электронов. Роль зонных электронов проявляется в их взаимодействии с локальными электронами (гибридизация, рассеяние и т.п.).

N₂	Состав сплава, wt %	T_N, \mathbf{K}	$f, 10^3 {\rm Hz}$	E, GPa	$(\Delta E/E)_{T_N}$	$(\Delta_h)_{T_N}, 10^{-4}$
1	Cr-0.5 N	311	2.8	282.7	-0.059	45
2	Cr-0.5 N-0.4 Zr	311	2.7	287	-0.061	5.4
3	Cr-0.5 Nb	270	3.0	293	-0.048	1.8
4	Cr-0.9 Fe	290	2.8	290	-0.06	4
5	Cr-5 MgO	311	2.7	265	-0.019	0.8
6	Сr, закаленный	311	3.7	285.5	-0.056	100
	монокристалл					
7	Cr, отожженный	311	3.7	284.6	-0.057	99
	монокристалл					
8	Cr, поликристалл	311	2.9	269	-0.08	90
9	Cr, нераскисленный La и Y	311	2.8	287	-0.049	3.6
	поликристалл					

Значения изменений модуля Юнга, $(\Delta E/E)_{T_N}$, и затухания звука, $(\Delta_h)_{T_N}$, в хроме и его сплавах (при $T = T_N$)

Аномалии механических свойств АФМ кристаллов, особенно кубических часто оказываются больше, чем аномалии магнитной восприимчивости. Поэтому измерения скорости и поглощения звука позволяют точнее оценить характеристики АФМ состояния и найти границы магнитных фаз.

2. Образцы и методика измерений

В данной работе измеряются температурные зависимости модуля нормальной упругости от T_N до 1000 К в Сг и его сплавах. В поликристаллическом хроме содержатся примеси внедрения: С (до 10^{-2} %), N (до $4 \cdot 10^{-2}$ %) и О (до 10^{-3} % wt). Монокристалл Сг содержит этих примесей на порядок меньше.

Материалы для исследований сплавляли в медном водоохлаждаемом тигле в атмосфере очищенного аргона в лабораторной электродуговой печи с нерасходуемым вольфрамовым электродом и затем выливали в медный кокиль. Исходным компонентом служил хром электролитический, рафинированный отжигом в водороде. В качестве раскислителя в сплавы вводили иттрий или лантан (до 0.1% wt). Химический состав исследованных образцов приведен в таблице. В ней также приводится пиковое значение аномалии модуля Юнга $(\Delta E/E)_{T_N}$ в точке Нееля и затухания звука $(\Delta_h)_{T_N}$.

Модуль Юнга E(T) измерялся резонансным методом, в основу которого положена взаимосвязь между модулем нормальной упругости, собственной частотой f изгибных колебаний образца, его геометрическими размерами и массой, см. [8]. Относительное изменение модуля Юнга ($\Delta E/E$) при изменении температуры T находили по изменению резонансной частоты Δf (согласно $E \sim f^2$), которая определялась с точностью до 0.05%. Изменения проводили в вакууме, температура регулировалась автоматически с точностью $\pm 2^\circ$. Предварительно образцы отжигались 2 часа при 1400 К и охлаждались со скоростью 1°s. Монокристаллы Сг дополнительно закаливались от 1400 в эвтектику при 340 К. Типичные результаты измерения $E(T) \sim f^2(T)$ приведены на рис. 1. Такой же ход зависимости $f^2(T)$ наблюдали в работе [9]. Видно, что в интервале температур от T_N до $1.6T_N$ модуль Юнга увеличивается с ростом температуры, т.е. поведение E(T) отличается от такового в парамагнитных кристаллах, а также в ферро- и антиферромагнетиках выше T_c или T_N [2]. При $T > 2T_N$ модуль Юнга, как в немагнитном кристалле (линейная сплошная асимптота), убывает по линейному закону с повышением температуры. Немонотонная зависимость E(T) связывается с ближним АФМ порядком, см. раздел 4.

ВСП в Сг и его сплавах имеет большой период ~ 10*a* (вектор структуры $\mathbf{Q} \leq 0.1$), где *a* — период ОЦК решетки. Термические свойства Сг также необычны: немонотонная зависимость упругих модулей $C_{11}(T)$ и др. выше T_N , малая разница энтропии в парамагнитной фазе ВСП, см. [1]. Большая энергия Ферми $E_F \sim 10 \text{ eV}$ подавляет влияние зонных электронов на термические свойства (и на детали фазовой диаграммы). Важнейшую роль должны играть флуктуации химических (ковалентных) связей.

Рис. 1. Температурная зависимость частоты $f^2(T)$ (упругий модуль $E = Kf^2$) в отожженных при 1400 К образцах хрома и его сплавов. *I* — поликристалл Cr (№ 9), *2* — сплав Cr-0.9 % Fe, *3* — Cr-5 % MgO, *4* — Cr-0.4 % Zr-0.5 % N (указаны wt %).

Доменная структура в окрестности *T_N* и САФМ фаза выше *T_N*

3.1. Переходная доменная структура. Переход I рода из фазы ВСП в САФМ фазу в Сг и его разбавленных сплавах сопровождается переходной доменной структурой [2]. Аналогичным является переход из фазы ВСП (I) в соизмеримую (неелевскую) C-фазу. При заданной концентрации c_x компоненты X ($X = \text{Al}, \text{Os}, \text{Ru}, \dots$) температура перехода T_{IC} определяется равенством энергии соизмеримой фазы (вектор структуры $\mathbf{Q} = 0$) и фазы ВСП.

Термодинамическое рассмотрение основано на модели переменной валентности Сг. Ионы хрома могут иметь разное число ковалентных электронов *n*. Для удобства расчетов учитываем две возможности n = 1и 3. Обменное взаимодействие между спинами S_n разных ионов Сг предполагаем косвенным. Оно осуществляется через ковалентные электроны, поляризация которых s_{nj} различна для ионов Сг в подрешетках j = 1 (узлы типа (000)) и j = 2 (узлы типа (1/2 1/2 1/2)). Химическая связь $\Gamma_{12}^{(n)}$ между ближайшими соседями Сг определяет доминирующий межподрешеточный обмен $A_{12}^{(n)}$. Химическая связь внутри подрешеток $\Gamma_n(\mathbf{Q})$ благоприятствует ВСП. Спиновая часть термодинамического потенциала бинарна по векторам \mathbf{s}_{nj} и средним спинам магнитных ионов $S_{nj}(T)$

$$F = \sum_{nj} \left(\frac{1}{2} U_n \mathbf{s}_{nj}^2 - A \mathbf{s}_{nj} \mathbf{S}_{nj} - \Gamma_n(\mathbf{Q}) \mathbf{s}_{nj} \mathbf{s}_{nj} \right) - \sum_n \Gamma_{12}^{(n)} \mathbf{s}_{n1} \mathbf{s}_{n2}.$$
(1)

Здесь введены кулоновский параметр (Хаббарда) U_n и хундовский обмен A, через которые выражаются обменные параметры $\hat{A}^{(n)}$ спиновой решетки. Например,

$$A_{12}^{(n)} \cong \Gamma_{12}^{(n)} (A/U_n)^2.$$
(2)

Варьирование (1) по векторным переменным s_{nj} проводим, полагая $Q \ll 1$. Используем

$$\Gamma_n(\mathbf{Q}) \cong \Gamma(0) - \Gamma'_n \mathbf{Q}^2, \qquad \Gamma_{ij} = \Gamma_i - \Gamma_j.$$
 (3)

Обозначим

$$U_{13} = U_1 - U_3 + \left[\Gamma_{12}^{(1)}(0) - \Gamma_{12}^{(3)}(0)\right].$$
 (4)

Для малых $c_x \sim 10^{-2}$ разлагаем коэффициенты термодинамического потенциала (1) в ряды по c_x

$$\Gamma'_n(c_x) = \Gamma'_n(0) + \Gamma'_{cn}c_x, \tag{5}$$

$$A_{12}(c_x) = A_{12}(0) + A'_{12}c_x, \qquad A^{(n)}_{12} \cong A_{12}.$$
 (6)

Рис. 2. Фазовая диаграмма сплава Cr-X (c_X — концентрация примеси X). Одинарная линия — переходы II рода, 2 линии со стрелками — переходы I рода с гистерезисом.

Варьирование (1) с использованием результатов [10–15] дает выражение для величины вектора ВСП

$$Q^{2} = \left[2\Gamma_{13}(0) - U_{13}\right]/2\Gamma_{13}' > 0 \tag{7}$$

и критической концентрации с_x для *I*-С-перехода

$$c_x = \left[A_{12}(0) + \Gamma'_3(0) \right] / \left[\Gamma'_{c3} Q^2(c_x) 2A'_{12} \right] > 0 \quad (8)$$

в предположении, что в *C*-фазе ионы Cr находятся в состояни n = 3 со спином $S_3 = 3/2$.

Результат (8) подтверждает определяющую роль спиновой (обменной) энергии A_{12} (2) в стабилизации ВСП. При этом структура ВСП (вектор **Q**) определяется электронными (ковалентными в нашей модели) энергиями $\Gamma_{ij}^{(n)}$. На фазовой диаграмме (рис 2) двумя линиями (с гистерезисом) показаны переходы І рода. Одинарной линией показан переход II рода из соизмеримой (неелевской) *С*-фазы в парамагнитную фазу. Штриховой линией показан размытый переход из фазы САФМ в однородную парамагнитную фазу. Тройная точка пересечения трех переходов І рода требует более громоздкого анализа, который здесь не приводится. Неравенство (8) определяет, в частности, условие существования *I*–*C*-перехода.

Доменная структура для перехода ВСП–САФМ рассчитывалась в [2] без учета "прилипания" АФМ кластеров к доменным стенкам. Влияние примесей, согласно (5)–(8), учтем, рассматривая явно зависимость от c_x -параметров уравнений движения стенок j разного типа. В матричной форме уравнение движения отдельной стенки есть

$$m_{\alpha\beta}\ddot{x} + \gamma_{\alpha\beta}\dot{x}_{\beta} + k_{\alpha\beta}x_{\beta} = (\hat{P} \otimes \Delta\hat{u})_{\alpha}, \quad \hat{P}(t) = \hat{P}_{\sim}e^{i\omega t}, \quad (9)$$

где тензоры массы стенки \hat{m} , затухания $\hat{\gamma}$, квазиупругой силы \hat{k} , разности тензоров спонтанных деформаций $\Delta \hat{u}$ соседних доменов определяют вектор **x** смещения плоского участка стенки под действием тензора внешних давлений $\hat{P}(t)$. Неоднородностью (звукового) давления \hat{P} пренебрегаем. Однородное периодическое решение имеет вид:

$$\mathbf{x}(t) = \mathbf{x}_0 e^{i\omega t}.\tag{10}$$

Векторная амплитуда

$$\mathbf{x}_{0} = \left(\hat{m}\omega^{2} + i\omega\hat{\gamma}\right)^{-1} \left(\hat{P}_{\sim} \otimes \Delta\hat{u}\right), \qquad (11)$$

вообще говоря, зависит от положения данного участка стенки. Последнее связано, например, с неоднородным распределением примесей $c_x(\mathbf{r})$.

Для кубического монокристалла с симметричными стенками доменов можно рассматривать диагональные тензоры $\hat{\gamma}$ и \hat{k} , но вводить индекс *j* для стенок разного типа [2]. Переменная продольная деформация образца равна

$$u(t) = e^{i\omega t} \left\{ (P_{\sim}/C_{11}) + \sum_{j} u_{j} \right\}, \quad u_{j} = \chi_{0j} \Delta u_{j}, \quad (12)$$

откуда, подставляя (12), получаем дефект комплексного упругого модуля $C_{11}(T)$

$$C_{11} \cong C_{11}^{(0)} - \sum_{j} C_{11} (\Delta u_j)^2 / (k_j^2 + i\omega\gamma_j).$$
(13)

Максимальный дефект модуля в окрестности T_N (минимум $C_{11}(T_N)$, см. таблицу), равен реальной части (13)

$$\Delta C_{11}(T_N) = -\sum C_{11}(\Delta u_j)^2 k_j / (k_j^2 + \gamma_j^2 \omega^2).$$
(14)

Максимум затухания (величина $(\Delta h)_{T_N}$ в таблице) выражается через мнимую часть (13)

Im
$$C_{11}(T_N) = \sum C_{11}(\Delta u_j)^2 (\omega \gamma_j) / (k_j^2 + \omega^2 \gamma_j^2).$$
 (15)

Зависимости величин (14) и (15) от концентрации c_X примеси X определяются $k_j(c_x)$ и $\gamma_j(c_x)$. Можно ожидать, что как k_j , так и γ_j растут с ростом c_x , что объясняет уменьшение затухания (15) в сплавах Сг. Разные величины (14) для разных образцов объясняются различием характеристик стенок Δu_j , k_j т γ_j .

3.2. Суперантиферромагнитная (САФМ) фаза выше T_N . Существование САФМ фазы выше T_N кристаллов сплавов Сг, обладающих ВСП, обосновано сильным межподрешеточным обменом A_{12} [4]. Ее характерные свойства рассчитаны в [4,15]. Наиболее яркой характеристикой стала возрастающая функция $C_{11}(T)$ при $T_N < T < 2T_N$. Недавно обнаружена та жа аномалия в геликоидальном Но [16], имеющем периодическую спиновую структуру при $T < T_N = 132$ К. Аномальный максимум температурной зависимости продольной скорости УЗ в Но наблюдается при $T_N < T \le 200$ К для $f = 10^7$ Hz.

В отсутствие магнитного поля H основной характеристикой САФМ фазы с кластерами, обладающими неелевским ближним порядком, полагаем вектор антиферромагнетизма l(T). Энергия кластера равна сумме

Рис. 3. Рассчитанный дефект упругого модуля $\Delta C_{11}(T)$ кубического суперантиферромагнетика (SAFM) без учета зависимости константы магнитострикции $\lambda(T)$ от температуры T.

энергий магнитной анизотропии Φ_A и магнитоупругой $\Phi_{me}(T)$

$$\Phi_A = -K(T) \sum \alpha_j^4, \quad \Phi_{me} = \lambda(T) u_{jj} \alpha_j^2 + \dots,$$
$$\alpha_j = l_j / |\mathbf{l}(T)|. \tag{16}$$

В выражении Φ_{me} выписан только член, ответственный за дефект $C_{11}(T)$. Статистическая сумма системы равных по размерам САФМ кластеров

$$Z_0 = \int d\alpha \exp\left\{-\beta \left[\Phi_A + \Phi_{me}(\hat{u})\right] C_{cl}\right\},$$
$$\Phi = -\frac{1}{\beta} \ln Z_0 + C_{ij} u_{ii} u_{jj}/2, \qquad (17)$$

где V_{cl} — объем кластера, $\beta = 1/k_B T$.

Дефект упругого модуля (рис. 3) получаем, варьируя (17) по \hat{u} ,

$$\Delta C_{11}(T) = -\beta \lambda^2(T) Z_2,$$

$$Z_2 = \partial^2 \ln Z_0 / \partial B^2, \qquad B = \beta K V_{cl}.$$
 (18)

Численный расчет (18) дается в предположении линейного хода

$$K(T) \cong K_0(1 - T/pT_N), \quad p = 3/2.$$
 (19)

Сравнение с экспериментом при $V_{cl} = 10^{-20} \,\mathrm{cm}^3$, $K_0 = 10^5 \mathrm{J/m^3}$ позволяет найти функцию $\lambda(T)/\lambda(T_N)$. Величина $\lambda(T_N) \sim 10^{-2} C_{11}$.

4. Сравнение теории с экспериментом

Дефект модуля Юнга находили как разность между экстраполированным линейным ходом зависимости $f^2(T)$ (прямые на рис. 1) и наблюдаемым в эксперименте выше точки Нееля (рис. 1). Дефект модуля Юнга

Рис. 4. Температурные зависимости дефекта молуля Юнга $(\Delta E/E)(T)$ (*a*) и константы магнитострикции $\lambda(T)/\lambda(T_N)$ (*b*) в монокристалле Cr [110]. *1* — закаленный от 1400 К в эвтектику, *2* — отожженный 2 часа при 1400 К, *3* — отожженный поликристалл Cr (№ 9), *4* — сплав Cr-5 wt % MgO.

Рис. 5. То же, что на рис. 4 для сплавов Сг. 1 — Сг-0.5 % N, 2 — Сг-0.4 % Zr-0.5 % N, 3 — Сг-0.9 % Fe, 4 — Сг-0.5 % Nb.

уменьшается с ростом температуры T (рис. 4, a и 5, a). В соответствии с [4] из уравнения

$$\Delta E^{\exp} = \Delta C_{11}^{(0)} \left[\lambda(T) / \lambda(T_N) \right]^2, \qquad (20)$$

где $\Delta C_{11}^{(0)}(T)$ рассчитано по формуле (18) для $\lambda(T) = \text{const}$ (рис. 3), можно оценить изменение константы магнитострикции $\lambda(T)$ с ростом T (рис. 4, b и 5, b).

Полученные данные (рис. 4 и 5) свидетельствуют о том, что на температурные зависимости ΔE и λ влияют содержание примесей внедрения в твердом растворе, примесей замещения, а также наличие выделений второй фазы в некоторых образцах. Эти отличия могут быть обусловлены различным объемом антиферромагнитных кластеров V_{cl} в (18), разной константой магнитной анизотропии K(T) (19). Полученные экспериментальные зависимости $\lambda(T)$ аналогичны таковым для констант магнитострикции магнетиков 3*d*-группы [17].

Сравнение экспериментальных данных (таблица и рис. 1) в окрестности T_N сплавов Сг с теоретическими зависимостями (14) и (15) показывает, что наличие примесей сложным образом влияет на распределение доменов упорядоченной фазы. Возможное неоднородное распределение примесей (на границах кристаллитов в поликристаллах, на дислокациях в монокристаллах) должно оказывать влияние на параметры γ_j и k_j , характеризующие стенки *j*-типа переходной доменной структуры в окрестности T_N . Полученные данные показывают, что основное влияние на сингулярности в распространении звука оказывает переходная доменная структура в окрестности T_N .

Применимость ковалентной модели волн зарядовой и спиновой плотности

Модель локализованных (ковалентных и магнитных) электронов имеет преимущество перед зонной моделью Оверхаузера и др. (см. [1]) для детательного описания волн зарядовой и спиновой плотностей в переходных металлах с переменной валентностью. Линейная связь между параметрами ковалентных и спиновых гамильтонианов дает экспериментально наблюдаемую связь между периодами волн зарядовой и спиновой плотностей. Период ВСП в 2 раза меньше. Уравнение для вектора ВСП 2Q приводит к условиям существования ВСП, переходу I рода из ВСП в соизмеримую (неелевскую) фазу. Фазовая диаграмма сплавов Сг, содержащих фазу ВСП, определяет стабильность ближнего неелевского порядка.

Как только неравенство (17) (условие нестабильности дальнего неелевского порядка (*C*-фазы) относительно образования ВСП) не выполняется, разрушение ВСП при $T > T_N$ приводит к ближнему неелевскому АФМ порядку. Существование АФМ кластеров проявляется

как САФМ фаза. В кубических кристаллах типа Cr наиболее яркой характеристикой САФМ фазы является аномальный рост упругих модулей ($C_{11}(T)$) с ростом T выше T_N . Численный расчет дефекта модуля $\Delta C_{11}(T)$ проверяется экспериментально. При заданном объеме АФМ кластеров V_{cl} и его константе анизотропии K(T)подгоночной величиной служит относительная константа магнитострикции $\lambda(T)/\lambda(T_N)$. Измеренные кривые $\lambda(T)$ оказываются типичными для 3*d*-сплавов, что подтверждает применимость ковалентной модели ВСП.

В заключение можно сделать конкретные выводы.

1) Квазихимическая модель ковалентной связи 3*d*ионов детально описывает состояние с ВЗП и ВСП. Она основана на переменной валентности 3*d*-ионов.

2) Период ВЗП в 2 раза больше периода ВСП. Вектор структуры **Q** находится из уравнения, связывающего дисперсию ковалентного взаимодействия $\Gamma_n(\mathbf{Q})$ и кулоновские интегралы U_n . Учет дисперсии обменных интегралов $A_{ij}^{(n)}(\mathbf{Q})$ приводит к небольшому пику $\mathbf{Q}(T)$ вблизи T_N .

3) Главную роль играет АФМ обмен разных подрешеток $\{000\}$ и $\{1/2 \ 1/2 \ 1/2\}$. Он определяет величину T_N .

4) Наличие САФМ фазы при $T_N < T \lesssim 2T_N$ в Сг и его сплавах, имеющих ВСП при $T < T_N$, объясняет аномальный рост упругого модуля $C_{11}(T)$ с ростом Tпри $T \lesssim 500$ К.

5) Измеренные аномалии распространения звука в Cr и его сплавах с Zn, N, Nb, MgO, Fe, . . . подтверждают теорию. Рост $C_{11}(T)$ выше T_N не коррелирует с пиковыми аномалиями дефекта C_{11} и затухания звука в окрестности T_N .

6) Интерпретация экспериментальных данных дает температурные зависимости констант магнитострикции $\lambda(T)$. Их ход при $T_N < T \leq 2T_N$ согласуется с теорией магнитострикции и экспериментальными данными для магнетиков 3*d*-группы.

7) Параметры переходной доменной структуры (квазиупругая сила k_j и затухание γ_j доменных стенок типа j) чувствительны к примесям и дефектам структуры (дислокациям и границам кристаллитов).

8) По данным, приведенным в таблице, можно сделать вывод, что в окрестности T_N аномалии распространения звука определяются параметрами переходной доменной структуры перехода I рода. при этом а) наибольшее затухание в переходной области $(\Delta_h)_{T_N}$ наблюдается в чистом Сг. Согласно (15), ему соответствуют малые значения квазиупругой силы k_j стенок *j*. Последние определяют также наибольшие значения дефектов модуля Юнга $|\Delta E/E|_{T_N}$, согласно (14); б) наименьшее затухание в переходной области наблюдается в сплавах Сг с добавками Nb и MgO. Согласно (14) и (15), оно коррелирует с наименьшими значениями $|\Delta E/E|_{T_N}$ и объясняется сегрегацией примесей в доменных стенках, которая увеличивает k_j ; в) большой разброс значений $(\Delta_h)_{T_N}$ по сравнению с разбросом данных для дефекта модуля $|\Delta E/E|_{T_N}$ объясняется, согласно (15), разбросом значений γ_i в пределе $\gamma_i \omega \ll k_i$.

Работа частично поддержана грантами ГФФИ Украины 2.4/965 и 2.4/993.

Список литературы

- Е.И. Кондорский. Зонная теория магнетизма. Ч. 2. МГУ, М. (1977). 93 с.
- [2] А.И. Мицек, Т.В. Голуб. ФММ 66, 1, 95 (1988).
- [3] A.J. Kotani. J. Phys. Soc. Japan 36, 1, 103 (1974).
- [4] А.И. Мицек, В.Н. Пушкарь, В.А. Мицек. Металлофизика 18, 5, 37 (1996).
- [5] W.C. Muir, E. Fawcett, J.M. Petz. Phys. Rev. Lett. 59, 3, 335 (1987).
- [6] Дж. Займан. Электроны и фононы. ИИЛ, М. (1962). 488 с.
- [7] Е.А. Туров, А.И. Мицек. ЖЭТФ **38**, *6*, 1847 (1960).
- [8] А. Новик, Б. Берри. Релаксационные явления в кристаллах. Атомиздат, М. (1975). 472 с.
- [9] Т.В. Голуб, В.Г. Иванченко, О.Н. Кашевкая. Металлофизика 13, 9, 114 (1991).
- [10] A.I. Mitsek. Phys. Stat. Sol. (b) 152, 2, 507 (1989).
- [11] A.I. Mitsek, V.A. Mitsek. Phys. Stat. Sol. (b) **199**, 2, 549 (1997).
- [12] А.И. Мицек, В.Н. Пушкарь. ФТТ 37, 10, 2865 (1995).
- [13] А.И. Мицек. УФЖ 41, 1, 91 (1996).
- [14] B. Coqblin. The Electron Structure of Rare–Earth Metals and Alloys: the Magnetic Heavy Rare–Earth. Acad. Press, San Fransisco (1977). 656 p.
- [15] А.И. Мицек. УФЖ 32, 1, 103 (1987).
- [16] P. de V Du Plessis, A.M. Venter, G.H.F. Brist. J. Phys. Condens. Mat. 7, 50, 9863 (1955).
- [17] Р. Бозорт. Ферромагнетизм. ИИЛ, М. (1956). 784 с.