Эволюция оптических свойств монокристаллов La_{1-x}Sr_xMnO₃

© Л.В. Номерованная, А.А. Махнёв, А.Ю. Румянцев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия E-mail: optics@ifm.e-burg.su

(Поступила в окончательном виде 28 декабря 1998 г.)

На монокристаллах La_{1-x}Sr_xMnO₃ (x = 0.1, 0.2 и 0.3) эллипсометрическим методом изучена дисперсия действительной $\varepsilon_1(\omega)$ и мнимой $\varepsilon_2(\omega)$ частей комплексной диэлектрической проницаемости в диапазоне спектра от 100 meV до 5 eV при комнатной температуре. Обнаружено, что при замещении лантана стронцием оптический спектр меняется кардинально. Наблюдается не только смещение основных особенностей спектра при 1.9 и 4.7 eV исходного LaMnO₃ к низким энергиям, но и частичное перераспределение спектрального веса оптической проводимости в область зонной щели E < 1.7 eV. Для составов x = 0.2 и 0.3 на фоне недрудевского поведения оптической проводимости при низких энергиях наблюдается тонкая структура межзонного поглощения.

Семейство окислов со структурой перовскита $\operatorname{Re}_{1-x}A_x\operatorname{MnO}_3$ ($\operatorname{Re} = \operatorname{La}$, Nd и A = Ca, Sr, Ba) проявляет при замещении редкоземельного элемента двухвалентным металлом экстремально высокие изменения физических свойств: переход металл-изолятор (MU), переход антиферромагнетик-ферромагнетик (AMФ-ФМ), переход парамагнетик-ферромагнетик (ПМ-ФМ) с необычными транспортными свойствами, колоссальное отрицательное магнитосопротивление, структурные фазовые переходы. При $0.2 \le x \le 0.5$ материалы при низких температурах ФМ с увеличением температуры переходят в ПМ состояние с температурой Кюри $T_C = 200-350 \operatorname{K}[1]$.

Необычные изменения электронной структуры с изменением температуры получены спектроскопическими методами, в том числе оптическими. В монокристалле $La_{1-x}Sr_xMnO_3$ (x = 0.175, $T_C = 273$ K) вблизи границы МИ [2] и в поликристаллической пленке Nd_{0.7}Sr_{0.3}MnO₃ $(T_C = 180 \text{ K})$ [3] наблюдали при переходе в металлическое состояние перераспределение спектрального веса оптической проводимости в широкой области спектра 0-3 eV. При $T > T_C$ в спектре оптической проводимости обнаружили щелеподобную особенность. С уменьшением температуры при T < T_C или с увеличением магнитного поля область щели заполнялась и интенсивность низкоэнергетического поглощения увеличивалась. В противоположность ферромагнитным металлам (Fe, Со, Ni) в этих соединениях ниже T_C носители заряда оказались полностью поляризованными по спину. Авторы [2] интерпретировали появление этого поглощения переходами с переносом заряда между занятыми $Mn^{3+}e_g$ -уровнями и незанятыми $Mn^{4+}e_g$ -уровнями, расщепленными искажениями Яна-Теллера.

Следует отметить, что в [2,3] исследовались оптические свойства упомянутых составов манганитов только с изменением температуры и совершенно не изучались оптические свойства при изменении композиции двухвалентного металла. В то же время известно, что, например, в высокотемпературных сверхпроводниках (меднооксидных соединениях) при замещении редкоземельного элемента или кислородной нестехиометрии оптические свойства а, следовательно, электронная структура меняются кардинально [4,5]. Кроме того, спектроскопические методы изучения перестройки электронного спектра при переходе МИ при изменении стехиометрии в высококоррелированных системах, какими являются манганиты, представляет самостоятельный интерес. В первую очередь это связано с тем, что все еще не ясно, какие факторы вызывают переход МИ при изменении концентрации [6]. К тому же известны затруднения в выборе приближения при расчете электронной структуры перовскитов в рамках одноэлектронных зонных расчетов [7].

С целью лучшего понимания перестройки электронного спектра при замещении лантана стронцием в $A\Phi M$ изоляторе LaMnO₃ в данной работе эллипсометрическим методом исследованы оптические свойства монокристаллов La_{1-x}Sr_xMnO₃.

1. Образцы, метод исследования

Монокристаллические образцы манганитов лантана $La_{1-x}Sr_xMnO_3$ (x = 0.1, 0.2 и 0.3) выращены методом бестигельной зонной плавки с радиационным нагревом зоны. Заготовки для получения монокристаллов были приготовлены из смеси порошков Mn_2O_3 , $SrCO_3$, La_2O_3 по стандартной керамической технологии. Температурные зависимости электросопротивления исследованных образцов приведены в [8]. Температуры перехода в магнитоупорядоченное состояние T_C составили 160 (x = 0.1), 320 (x = 0.2), и 353 K (x = 0.3) [9]. Образцы для оптических измерений имели размеры $5 \times 2 \times 2 \text{ mm}^3$. Зеркальные поверхности готовили механическим полированием на алмазном порошке с размером зерна $d < 0.5 \mu \text{m}$.

Измерение оптических постоянных показателей преломления n и поглощения k выполнены методом Битти на автоматическом эллипсометре, собранном на базе КСВУ-12, при углах падения света 67° и 71° в интервале спектра от 100 meV до 5 eV при комнатной температуре

Рис. 1. Спектр оптической проводимости $\sigma(\omega)$ монокристаллов La_{1-x}Sr_xMnO₃ (x = 0.1, 0.2, и 0.3). Спектр $\sigma(\omega)$ поликристалла LaMnO₃ приведен из [10]. На вставке показана низкоэнергетическая часть $\sigma(\omega)$. Стрелками указаны положения пиков $\sigma(\omega)$. Знаком + на оси показаны значения статической проводимости для x = 0.2 и 0.3.

с погрешностью (2–4)%. По значениям *n* и *k* рассчитаны действительная $\varepsilon_1 = n^2 - k^2$ и мнимая $\varepsilon_2 = 2nk$ части комплексной диэлектрической проницаемости и оптическая проводимость $\sigma = nk\omega/2\pi$ (ω — циклическая частота световой волны).

2. Результаты и их обсуждение

На рис. 1 представлены спектры оптической проводимости $\sigma(\omega)$ монокристаллов La_{1-x}Sr_xMnO₃ с содержанием стронция x = 0.1, 0.2 и 0.3. Здесь же приведена кривая $\sigma(\omega)$ поликристаллического образца LaMnO₃ из работы [10]. Спектры действительной $\varepsilon_1(\omega)$ и мнимой $\varepsilon_2(\omega)$ частей комплексной диэлектрической проницаемости показаны на рис. 2, *a*, *b* соответственно.

Как видно, изменение оптического спектра поглощения при замещении лантана стронцием носит сложный характер. На кривой $\sigma(\omega)$ кристалла с минимальным содержанием стронция (x = 0.1) отчетливо видны две широкие полосы поглощения: ступенчатообразная с центром при 1.7 eV и интенсивная с максимумом при 4.6 eV. По сравнению с чистым соединением LaMnO₃ энергетическое положение обеих полос поглощения оказалось сдвинутым в сторону меньших энергий. Здесь пики видны при 1.9 и 4.7 eV. Спектр $\sigma(\omega)$ LaMnO₃ показывает щелеподобную особенность при $E \sim 1.1 \, \text{eV}$. С дальнейшим увеличением примеси стронция (x = 0.2и 0.3) полоса с максимумом при 4.6 eV продолжает смещаться к низким энергиям на 0.3-0.4 eV, в то время как первая полоса при 1.7 eV оказывается завуалированной появившимся вкладом от свободных носителей заряда. Об этом однозначно и более наглядно свидетельствует поведение функций $\varepsilon_1(\omega)$ и $\varepsilon_2(\omega)$ (рис. 2). Спектр функции $\varepsilon_2(\omega)$ для состава x = 0.1 демонстрирует размытие низкоэнергетического крыла первой полосы. Резкий рост функции $\varepsilon_2(\omega)$ и одновременное уменьшение абсолютных значений функции $\varepsilon_1(\omega)$ для кристаллов с x = 0.2и 0.3 обусловлены подключением вклада от свободных носителей. Прохождение через нуль функции $\varepsilon_1(\omega)$ для образца с x = 0.3 свидетельствует о преобладающем вкладе свободных носителей, начиная с энергии 0.2 eV. Как известно, отрицательный вклад в $\varepsilon_1(\omega)$ обеспечивается механизмом внутризонного (друдевского) ускорения носителей, тогда как положительный вклад связан с межзонными квантовыми переходами.

Кроме того, на фоне недрудевского поведения $\sigma(\omega)$ для энергий, меньших 1 eV, обнаружены пики поглощения: при 0.22 eV для образца с x = 0.2 и при 0.37 eV для образца с x = 0.3. Широкая полоса с максимумом

Рис. 2. Действительная $\varepsilon_1(a)$ и мнимая $\varepsilon_2(b)$ части комплексной диэлектрической проницаемости монокристаллов La_{1-x}Sr_xMnO₃ (x = 0.1, 0.2 и 0.3). На вставке показана низкоэнергетическая часть $\varepsilon_1(\omega)$. Стрелками указаны положения пиков.

при 0.37 eV обнаруживает тонкую структуру (вставка на рис. 2, *a*), лучше проявившуюся в спектре функции $\varepsilon_1(\omega)$. Следовательно, введение стронция приводит (как и в случае уменьшения температуры $T < T_C$ при фиксированном *x* [2]) к появлению дополнительного поглощения для энергий E < 1.1 eV.

Другая особенность поведения оптической проводимости $La_{1-x}Sr_xMnO_3$, наиболее заметная для состава x = 0.2, заключается в перераспределении спектрального веса от высокоэнергетической области спектра к низкоэнергетической.

Наиболее наглядно перераспределение спектрального веса при изменении концентрации стронция можно увидеть, вычисляя спектральную функцию плотности электронов по формуле

$$N_{eff} = \frac{2m}{\pi e^2} \int_0^\infty \sigma(\omega') d\omega', \qquad (1)$$

где m и e — масса и заряд электрона. Величина N_{eff} пропорциональна числу электронов, вовлеченных в оптические переходы вплоть до энергии $\hbar\omega$ (в нашем случае до 5 eV) независимо от механизма их возбуждения. Рассчитанные из данных $\sigma(\omega)$ (рис. 1) значения N_{eff} приведены на рис. 3. Для состава $x = 0.1 N_{eff}$ становится заметным вблизи края поглощения (см. вставку на рис. 1), начиная с энергии 0.5 eV. На кривых N_{eff} для образцов с x = 0.1 и 0.2 имеют две характерные энергии E = 1.7 и 5.0 eV, где N_{eff} не зависит от x. Значение первой находится вблизи максимума фундаментальной полосы поглощения. Для кристалла с x = 0.2 отчетливо видно перераспределение плотности электронов от области энергий 2.0-5.0 eV в область $E < 1.7 \,\mathrm{eV}$. Для состава $x = 0.3 N_{eff}$ увеличивается плавно во всей спектральной области. Подобное поведение наблюдали в медных ВТСП-окислах, хотя следует заметить и существенное отличие. В $La_{2-r}Sr_rCuO_4$, например, введение Sr не уменьшало энергию фундаментальной щели, формируемой переходами с переносом заряда $Cu(3d) \rightarrow O(2p)$. Наблюдали лишь перераспределение спектрального веса от высоких энергий в область щели [11]. В La_{1-x}Sr_xMnO₃ мы обнаружили не только перераспределение спектрального веса, но и

Рис. 3. Спектральная функция плотности электронов N_{eff} , определенная по правилу сумм для проводимости $\sigma(\omega)$ для монокристаллов La_{1-x}Sr_xMnO₃ (x = 0.1, 0.2 и 0.3).

Рис. 4. Плотность состояний D (схематично) LaMnO₃ для спинов по намагниченности (\uparrow) — (a) и против намагниченности (\downarrow) — (b).

смещение максимума полосы от 1.9 в LaMnO₃ до 1.7 eV в La_{0.9}Sr_{0.1}MnO₃. Таким образом, легирование LaMnO₃ стронцием привело к более радикальному изменению электронной структуры, чем в ВТСП или обычных полупроводниках, где примесные состояния формируются в щели без изменения ее энергии.

Похожее поведение обнаружено при исследовании электронной структуры $La_{1-x}Sr_xMnO_3$ методами фотоэмиссионной и рентгеновской спектроскопии [12]. При введении La в SrMnO₃ ниже E_F на 1–2 eV появлялось поглощение (e_g ↑-симметрии), интенсивность которого росла с увеличением концентрации лантана, а интенсивность поглощения (e_g ↑-симметрии) выше E_F уменьшалась, показывая перенос спектрального веса из незанятых в занятые e_g ↑-состояния с электронным допированием. Такое изменение спектра не соответствовало поведению в модели жесткой полосы.

Из предложенного в [10] на основании анализа оптических, фотоэмиссионных и рентгеновских данных схематического расположения зон в исходном LaMnO₃, а также данных теоретических зонных расчетов [7,13,14], можно заключить, что электронный зонный спектр этого соединения очень сложен. На рис. 4 схематически показано энергетическое положение полос в зонном спектре LaMnO₃ для направлений спинов по намагниченности и против намагниченности. Расщепление Mn(3d)-зон в LaMnO₃ обусловлено суммарным эффектом кристаллического поля, обмена и искажения Яна-Теллера. Зоны $Mn(3d)t_{2g}$ т и e_g (с направлением спина по намагниченности) заполнены, а $t_{2g} \downarrow$ и $e_g \downarrow$ (с направлением спина против намагниченности) не заняты. Наполовину заполненная e_g ⁺-зона расщеплена из-за искажения Яна–Теллера октаэдра MnO₆ на зоны $e_g^1 \uparrow$ и $e_g^2 \uparrow$. Возможно это расщепление ответственно за открытие зонной щели и изоляторное поведение LaMnO₃. Зоны Mn(3d) \uparrow перекрываются с O(2p)-зоной и сильно гибридизуются в интервале $0-7 \,\mathrm{eV}$ ниже уровня Ферми E_F , в то время как Mn(3d) -зоны отделены от O(2p)-зон. Зона лантана 5-*d* расположена выше уровня Ферми на 2-4 eV. Замещение лантана двухвалентным металлом приводит к сосуществованию ионов марганца с валентностью Mn³⁺ и Mn⁴⁺.

Полоса поглощения в спектре $\sigma(\omega)$ исходного LaMnO₃ при 1.9 eV была интерпретирована в [10] как формируемая переходами из занятых $O(2p)-e_g^1 \uparrow B$ свободные $e_g^2 \uparrow$ -состояния, и была получена оценка расщепления Яна–Теллера, равная ~ 0.5 eV. Вторая полоса при 4.6 eV была приписана переходам из O(2p) в свободные $e_g^2 \uparrow$ -состояния.

Принимая во внимание вышеизложенное, экспериментально наблюдаемая эволюция оптического спектра LaMnO₃ при замещении лантана стронцием может быть понята следующим образом. Высокие плотности состояний $O(2p) \downarrow$ зоны ниже E_F и $Mn(3d)t_{2g} \downarrow$ выше E_F в LaMnO₃ позволяют предположить, что основной вклад в $\sigma(\omega)$ в области E > 2 eV дадут дипольные p-d-переходы в системе полос против намагниченности. Энергетическое положение края полосы с максимумом при 1.9 eV в LaMnO₃ тогда связано с началом переходов их O(2p) в $Mn(3d)t_{2g} \downarrow$, а край интенсивной полосы с максимумом при 4, 6 eV — с переходами $O(2p) \rightarrow La(5d)$. Смещение полосы от 1.9 до 1.7 eV при минимальном введении стронция (x = 0.1) может являться следствием нескольких причин: во-первых, уменьшением рас-

щепления Яна–Теллера e_g ↑-зоны, во-вторых, сдвигом O(2p)-зоны ближе к уровню Ферми, в-третьих, сдвигом $Mn(3d)t_{2g}$ ↓-зоны. Вторая и третья причины могут объяснить к тому же монотонный сдвиг низкоэнергетического крыла полосы при 4.6 eV при дальнейшем увеличении содержания стронция. Несомненно, что вклад в широкую полосу при 1.7 eV вносят переходы между 3d-электронными состояниями Mn^{3+} и Mn^{4+} .

В результате понижения E_F и смещения зон O(2p)Mn(3*d*)*t*_{2*g*}↓ уже при минимальной концентрации Sr (x = 0.1) в щелевой области исходного LaMnO₃ появляется низкоэнергетическое поглощение, приводящее к видимому сдвигу максимума полосы к энергии 1.7 eV и затянутому низкоэнергетическому ее крылу. Оптическое поглощение для состава x = 0.1 при $E < 0.6 \, \text{eV}$ приписано в [9] взаимодействию света с носителями заряда с малой подвижностью (поляронами). При дальнейшем увеличении концентрации Sr низкоэнергетическое поглощение на фоне недрудевского поведения обнаруживает тонкую структуру с пиками при 0.22 (x = 0.2) и 0.37 eV (x = 0.3), связанную с межзонными переходами между электронными состояниями внутри e_g^1 -зоны марганца, гибридизованной с О(2*p*)-зоной. Следует подчеркнуть, что интенсивность низкоэнергетического поглощения увеличивается по мере увеличения Т_С в образцах от 160 (x = 0.1) до 353 К (x = 0.3).

Таким образом, представленные в работе результаты исследования оптических свойств манганитов La1-xSrxMnO3 свидетельствуют о существенном изменении электронной структуры. С увеличением концентрации Sr спектральные особенности оптической проводимости сдвигаются к низким энергиям. В зонной щели исходного изолятора LaMnO3 на фоне недрудевского поведения оптической проводимости, интенсивность которой зависит от величины Т_С, обнаружена тонкая структура межзонного поглощения. Для состава x = 0.2обнаружено частичное перераспределение спектрального веса оптической проводимости от высоких энергий в область зонной щели LaMnO₃, наблюдаемое и в других окислах при переходе МИ. Ясно, что необходимы дополнительные систематические исследования как для разделения вкладов в $\sigma(\omega)$, так и для определения параметров электронной структуры, ответственных за композиционный переход МИ в La_{1-r}Sr_rMnO₃.

Список литературы

- [1] Э.Л. Нагаев. УФН 166, 8, 833 (1996).
- [2] Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibaru, T. Arima, T. Tokura. Phys. Rev. Lett. 75, 1, 109 (1995).
- [3] S.G. Kaplan, M. Quijada, H.D. Drew, D.B. Tanner, G.C. Xiong, R. Ramesh, C. Kwon, T. Venkatesan. Phys. Rev. Lett. 77, 10, 2081 (1996).
- [4] L.V. Nomerovannaya, A.A. Makhnev, M.M. Kirillova. Thin Solid Films 234, 531 (1993).
- [5] Л.В. Номерованная, А.А. Махнев, С.В. Наумов, О.Н. Киселева. ФММ 83, 3, 53 (1997).

- [6] A. Fujimori, J. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisuki, S. Uchida, K. Takegahara, F.M.F. De Groot. Phys. Rev. Lett. 69, 10, 1796 (1992).
- [7] J. Solovyev, N. Hamada, K. Terakura. Phys. Rev. B53, 11, 7158 (1996).
- [8] В.Е. Архипов, В.П. Дякина, С.Г. Карабашев, В.В. Марченков, Я.М. Муковский, В.Е. Найш, В.Е. Старцев, Е.П. Хлыбов, А. Чопник. ФММ 84, 6, 93 (1997).
- [9] N.N. Loshkareva, Yu.P. Sukhorukov, B.A. Gizhevskii, A.A. Samokhvalov, V.E. Arkhipov, V.E. Naish, S.G. Karabashev, Ya.M. Mukovskii. Phys. Stat. Sol. (a) 164, 863 (1997).
- [10] J.H. Jung, K.H. Kim, D.J. Eom, T.W. Noh, E.J. Choi, J. Yu, Y.S. Kwon, Y. Chung. Phys. Rev. B55, 15489 (1997).
- [11] S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima. Phys. Rev. B43, 10, 7 942 (1991).
- [12] T. Satpathy, A.E. Boquet, T. Mizokava, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, M. Takano. Phys. Rev. B51, 20, 13 942 (1995).
- [13] W.E. Pickett, D.J. Singh. Phys. Rev. B53, 3, 1146 (1996).
- [14] D.A. Papaconstantopoulos, W.E. Pikcett. Phys. Rev. B57, 20, 12751 (1998).