Эволюция заполнения внешних валентных 6s-, 5d-оболочек в редкоземельных металлах

© В.А. Шабуров, А.Е. Совестнов, Ю.П. Смирнов, А.В. Тюнис

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия

(Поступила в Редакцию 25 декабря 1998 г.)

Методом смещений рентгеновских линий экспериментально измерены смещения K_{α_1} - и K_{β_1} -линий всех редкоземельных металлов (P3M = La–Lu). Из сопоставления экспериментальных и теоретических смещений, полученных в рамках модели Дирака–Фока (Купманса) определена заселенность 6*s*-, 5*d*-оболочек P3M. Для трехвалентных металлов с ростом порядкового номера наблюдается монотонный "переход" от конфигурации $6s^{\approx 2}5d^{\approx 1}$ к $6s^{\approx 1}5d^{\approx 2}$.

Известно, что все редкоземельные металлы (РМЗ), кроме Eu и Yb, при нормальных внешних условиях трехвалентны — имеют одинаковую внешнюю (или валентную) 6s-, 5d-оболочку и в химическом отношении подобны друг другу. Однако различие в физических свойствах этих элементов достаточно велико. Так, температура плавления, дебаевская температура в ряду La-Lu монотонно с ростом порядкового номера (Z) увеличивается примерно в 2 раза. Наблюдается существенное различие в коэффициенте теплового расширения, склонности к окислению, механических характеристиках и др. (см., например, [1]). Резко различны и их магнитные свойства, особенно в области низких температур. Монотонное изменение физико-химических свойств связывают с возрастанием числа 4*f*-электронов в ряду РЗМ. Однако наряду с локализованными 4f-электронами нельзя исключать и роль внешних *s*-, *d*-электронов, ответственных за многие физические свойства: электропроводность, обменное f-s, d-взаимодействия, образование валентных связей в соединениях и др. В частности, при изучении систем с особыми физическими свойствами на основе РЗМ (промежуточная валентность, "тяжелые" фермионы, изоморфные фазовые переходы, Кондо-решетки и др.) необходимо знание не только о заселенности 4f-оболочки и ее изменении при вариации внешних условий, но и распределение электронов по валентным 6s-, 5d-уровням, определяющим одну из фундаментальных характеристик этих систем — плотность состояний на уровне Ферми.

Общепринято считать (см., например, монографию [1]), что электронная конфигурация внешних оболочек трехвалентных РЗМ — $5d^16s^2$, а двухвалентных Еи и Yb — $6s^2$, хотя экспериментальных доказательств на микроскопическом уровне практически нет. Более того, в некоторых работах предполагается, что электронная конфигурация трехвалентных РЗМ не $5d^16s^2$, а $5d^26s^1$ [2]. Иногда электронную структуру РЗМ представляют как $(5d6s)^3$.

В данной работе методом смещений рентгеновских линий (см., например, [3,4]) определена заселенность 5*d*- и 6*s*-оболочек металлических La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb и Lu. Реперами служили соединения с известной электронной структурой MF₃ либо M₂O₃. Схема опыта и процедура измерений

подробно описаны в ранних публикациях [4,5]. Исследуемые металлы (чистота $\approx 99.9\%$) брались либо в виде фольг (толщина $\approx 0.2 \text{ mm}$), либо мелкодисперсных опилок. Для предотвращения окисления образцы были упакованы в герметические алюминиевые контейнеры.

Заселенность 5*d*-, 6*s*-состояний РЗМ определялась из сопоставления экспериментальных и теоретических смещений, получаемых в рамках релятивистской модели Дирака–Фока (Купманса). Решалась система уравнений

$$\Delta E_{calc}(n_d, n_s, n_d^i, n_s^i)^{\alpha(\beta)} = \Delta E^{\alpha(\beta)},$$

$$n_d + n_s = n,$$

$$n_d^i + n_s^i = 3(1 - i),$$

$$(n_s, n_s, n_s^i, n_s^i)^{\alpha(\beta)} = \text{pacueruse}.$$

где $\Delta E_{calc}(n_d, n_s, n_d^l, n_s^l)^{\alpha(\beta)}$ — расчетное смещение $K_{\alpha(\beta)}$ -линий, аппроксимированное полиномом второй

Зависимость заселенностей 5*d*- и 6*s*-оболочек РЗМ (n_d и n_s) от порядкового номера *Z*.

РЗМ	Тип кристаллической решетки	$\Delta E(K_{\alpha_1})$, meV		$\Delta E(K_{\beta_1}), \text{ meV}$	
		эксперимент	расчет	эксперимент	расчет
La	ДГПУ	60 ± 6	46	-16 ± 9	13
Ce Pr	ТЦК ДГПУ	$\begin{array}{c} 50 \pm 4 \\ 42 \pm 5 \end{array}$	33 37	-40 ± 5 -34 ± 9	-15 -20
Nd	ДГПУ	41 ± 3	36	-34 ± 7	-12
Sm	α -Sm	50 ± 6	46	-7 ± 8	-1
Eu Gd	ГЦК ГПУ	-50 ± 3 19 ± 4	-47 19	-80 ± 7 -38 ± 8	-95 -37
Tb	ГПУ	24 ± 5	23	-57 ± 9	-53
Dy	ГПУ	15 ± 6	30	6 ± 10	-26
Ho	ГПУ	20 ± 5	25	-24 ± 8	-34
Er	ГПУ	18 ± 4	25	-23 ± 6	-35
1m		-14 ± 6	0	-16 ± 12	-65
чь Lu	ГПУ	$\begin{array}{c} 14 \pm 3 \\ 11 \pm 6 \end{array}$	14 23	5 ± 13	-35

Экспериментальные и расчетные смещения K_{α_1} -, K_{β_1} -линий в РЗМ (реперы MF₃, M₂O₃)

степени, $\Delta E^{\alpha(\beta)}$ — экспериментальные смещения для РЗМ, n_d и n_s — заселенности 5d-, 6s-состояний в металлах, а n_d^i и n_s^i — в репере; i — ионность репера по Полингу, равная 0.9 для фторидов и 0.8 для окислов, n = 2 для Еu и Yb и n = 3 в остальных случаях. Экспериментальные и расчетные смещения K_{α_1} -, K_{β_1} -линий (ΔE) приведены в таблице, а соответствующие им заселенности 5*d*- и 6*s*-электронов (n_d и n_s) — на рисунке. Различие в физических свойствах РЗМ объясняется, как правило, различием числа 4*f*-электронов. Из-за неполной экранировки заряда ядра 4f-электронами с ростом Z происходит увеличение эффективного заряда, в поле которого находятся внешние электроны. Это вызывает в свою очередь сжатие как 4f-, так и валентной оболочек эффект так называемого лантаноидного сжатия. Поскольку внутреннее экранирование 5*d*-электронов меньше, чем 6s- (максимум зарядовой плотности 5d-электронов в радиальном направлении примерно в 2 раза находится ближе к ядру, чем максимум 6*s*-электронов [6]), электроны 5*d*-оболочек притягиваются к ядру сильнее. Это приводит к более "быстрому" (по сравнению с 6*s*) опусканию 5*d*-уровней с ростом Z [1] и соответственно к увеличению заселенности 5*d*-оболочек. Наблюдаемый нами эффект "перехода" от $6s^{\approx 2}5sd^{\approx 1}$ -конфигурации к $6s^{\approx}5d^{\approx2}$ иллюстрируется на рисунке. Для трехвалентных РЗМ наблюдается монотонное уменьшение числа 6sэлектронов и одновременное увеличение 5*d*-электронов. Линейная аппроксимация по МНК приводит к следующим зависимостям заселенностей 6s-, 5d-орбиталей трехвалентных РЗМ от числа их 4*f*-электронов (n_{4f}) :

> $n_{6s} = (0.02 \pm 0.04) - (0.06 \pm 0.01)n_{4f},$ $n_{-} = (0.08 \pm 0.04) + (0.06 \pm 0.01)n_{-}$

$$n_{5d} = (0.98 \pm 0.04) + (0.06 \pm 0.01)n_{4f}.$$

Полученные нами данные показывают, что увеличение n_{4f} с Z может приводит не только к хорошо известным различиям в макроскопических свойствах РЗС, но и к микроскопическим (монотонный переход от конфигурации $6s^{\approx 2}5d^{\approx 1}$ в начале РЗМ-ряда к $6s^{\approx 1}5d^{\approx 2}$ к концу ряда).

В свою очередь, перераспределение внешних 6*s*-, 5*s*электронов может во "втором" порядке нарушать монотонное поведение физических свойств РЗМ с увеличением *Z*. Так, удельное сопротивление, коэффициент Холла, работа выхода и др. [1], механизм которых определяется *s*-, *d*-электронами зоны проводимости, корреляцию с атомным номером РЗМ не проявляют.

Авторы благодарят О.И. Сумбаева за обсуждение и замечания.

Работа выполнена в рамках проекта (№ 96-02-17811), поддержанного Российским фондом фундаментальных исследований № 95-02-06327а.

Список литературы

- К.А. Гшнейднер. Сплавы редкоземельных металлов. ИИЛ, М. (1965).
- [2] A.M. Begley, R.G. Jordan, W.M. Temmerman, P.J. Durham. Phys. Rev. B41, 17, 11780 (1990).
- [3] O.I. Sumbaev. In: Modern Physics in Chemistry 1, 4. Academic Press (1977).
- [4] О.И. Сумбаев. УФН 124, 2, 281 (1978).
- [5] В.А. Шабуров, И.М. Банд, А.И. Грушко, Т.Б. Мезенцева, Е.В. Петрович, А.Е. Совестнов, Ю.П. Смирнов, О.И. Сумбаев, М.Б. Тржасковская, И.А. Маркова. ЖЭТФ 65, 3(9), 1157 (1973).
- [6] F. Herman, S. Skillman. Atomic Structure Calculations. Prentice Hall, Inc., Englewood Cliffs, New Jersy (1963).