Атомно-вакансионное упорядочение в карбидной фазе ζ -Та₄С_{3-x}

© В.Н. Липатников, А.И. Гусев

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 25 октября 2005 г.)

Методами нейтронографии, рентгеновской дифракции и металлографии исследована структура нестехиометрического тригонального (ромбоэдрического) карбида ξ -Та₄C_{3-x}, образующегося в системе тантал-углерод. Определены параметры элементарной ячейки тригонального (пр. гр. $R\bar{3}m$) карбида ξ -Та₄C_{3-x} (TaC_{0.67}), равные $a_H = 0.3123$ и $c_H = 3.0053$ nm. Показано, что металлическая плотноупакованная подрешетка карбида ξ -Та₄C_{3-x} построена из чередующихся блоков, в которых атомы металла размещены так, как в ГЦК и ГПУ подрешетках кубического и гексагонального карбидов ТаC_y и Та₂C, и является переходной между этими подрешетками. Впервые экспериментально установлено упорядоченное распределение атомов углерода C и структурных вакансий в карбиде ξ -Та₄C_{3-x} и рассчитана функция распределения атомов C на тех позициях неметаллической подрешетки, где происходит упорядочение. С учетом полученных результатов по фазе ξ -Та₄C_{3-x} уточнена фазовая диаграмма системы Та-C.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 06-03-32047).

PACS: 61.10.Nz, 61.12.Ld, 64.90.+b

1. Введение

Характерной чертой кубических MC_v ($MC_v\square_{1-v}$, $0.65 - 0.70 \le y \le 0.88 - 1.00$ гексагональных И $M_2 C_{v'}(M C_{v'/2} \Box_{0.5-v'/2}, 0.70 < y' \le 1.00)$ карбидов, образующихся в двойных системах M-C (M = V, Nb, Ta) переходных металллов V группы с углеродом, является высокая нестехиометрия неметаллической подрешетки. Эту же особенность имеют тригональные (ромбоэдрические) ξ - $M_4C_{3-x}(M_4C_{3-x}\Box_{1+x})$ или $MC_{(3-x)/4}\Box_{(1+x)/4}$, 0.20 < *x* < 0.56) карбиды ванадия, ниобия И тантала. Содержание структурных вакансий 🗆 в углеродной подрешетке этих карбидов может достигать десятков at.%, поэтому они наряду с кубическими и гексагональными карбидами входят в группу сильно нестехиометрических соединений [1,2]. Высокая концентрация структурных вакансий в нестехиометрических карбидах является предпосылкой их атомно-вакансионного упорядочения. Упорядочение кубических МС, и гексагональных $M_2C_{v'}$ карбидов изучено достаточно подробно [1–3] экспериментально и теоретически. Что касается нестехиометрических ζ-карбидов, известных в литературе как фазы ξ - M_4C_{3-x} с базисной тригональной решеткой, то об их упорядочении есть только предположения.

Сведения о фазе ξ -Та₄С_{3-х} немногочисленны и противоречивы. Впервые ξ -фазу в системе Та-С обнаружили в двух- и трехфазных образцах в области между гексагональным TaC_{0.52} и кубическим TaC_{0.73} карбидами [4]. Образцы были получены твердофазным спеканием порошков Та и С при температуре 2070–2370 К в вакууме. Наибольшее количество ξ -фазы содержалось в карбидах TaC_{0.59–0.64}. Нагрев карбида TaC_{0.64} при 2070 К в течение 26 h привел к росту содержания ξ -фазы, хотя образец остался трехфазным; нагрев при большей температуре сопровождался размытием отражений ζ -фазы на рентгенограмме и уменьшал ее количество. Аналогичную по структуре *ξ*-фазу обнаружили в системе Nb-C [5]. Позднее *Е*-фаза была найдена в тройных системах Hf-Ta-C [6] и Ta-B-C [7]; было показано, что даже малые добавки Hf или B подавляют образование *ξ*-фазы в системе Та-С. Авторы [6,7] определили состав *ξ*-фазы как Та₂С₂. Авторы [8–11] изучили карбидизацию (диффузионное насыщение углеродом) металлического тантала (прутка или слитка) и установили, что ζ-фаза выделяется в промежутке между слоями нестехиометрического кубического карбида ТаС, и гексагонального карбида Та₂С; последовательность слоев $TaC - (TaC_v + \xi) - \xi - (\xi + Ta_2C) - Ta_2C$ и резкой границы между слоями TaC_v , ξ -фазы и Ta_2C нет.

Дифракцию от ξ -карбида тантала наблюдали в работах [12,13]. Рентгеновское исследование ξ -фаз карбидов ванадия, ниобия и тантала [14] показало, что они имеют тригональную (пр. гр. $R\bar{3}m$) симметрию, а их состав можно представить как M_4C_{3-x} . Атомы углерода в фазах ξ - M_4C_{3-x} (M = V, Nb, Ta) размещаются в октаэдрических междоузлиях плотноупакованной металлической подрешетки. В гексагональных координатах периоды решетки карбида *ξ*-Та₄С₃, точный состав которого не известен, равны a = 0.3116 и c = 3.000 nm [14]. Электронная дифракция фазы *ξ*-Та₄C_{3-x}, полученной диффузионным насыщением танталовой фольги углеродом, показала, что ξ -фаза принадлежит к структурному типу Sn_2P_3 (пр. гр. $R\bar{3}m$) и ее состав должен быть близок к ТаС_{0.67} [15]. Реализация такого состава обеспечивается за счет большой концентрации углеродных вакансий относительно стехиометрического состава Та₄C₃ величина *x* в ξ -Та₄С_{3-*x*} может достигать 0.5.

По мнению авторов [15], в формировании ζ-фазы важная роль принадлежит дефектам упаковки. В [16] на основе результатов электронной микроскопии кубических (со структурой B1) карбидов TaC_{0.70}-TaC_{0.80} высказано предположение, что образование ζ -фазы из нестехиометрического кубического карбида тантала есть результат удаления каждой четвертой углеродной плоскости (111)_{в1} и соответствующего сдвига металлических атомных плоскостей (111)₈₁. Удаление углеродной плоскости (111)_{в1} происходит благодаря стоку в нее структурных вакансий, а сдвиг соседней металлической плоскости (111)_{в1} обеспечивается за счет схода дислокаций. Имеющиеся в литературе данные об интенсивности дифракционных отражений ζ-фазы сильно различаются, и потому ее структура до сих пор точно не определена. В работах [17–19] образование *ξ*-Та₄C_{3-x} ошибочно называют упорядочением на основе кубического карбида ТаС_у. Но описанное фазовое превращение не является переходом беспорядок-порядок между неупорядоченным кубическим карбидом ТаС, и тригональным карбидом ξ -Та₄С_{3-r}, так как кубическая симметрия базисной ГЦК металлической подрешетки неупорядоченного карбида ТаС, не сохраняется. Авторы [17-19] горячим прессованием смеси порошков TaC_{1.00} и TaC_{0.70} при температуре 2770 К и давлении прессования 20 МРа получили карбиды $TaC_{0.71}$ и $TaC_{0.76}$, содержащие ξ -фазу наряду с кубической ТаС, и гексагональной Та₂С фазами. Нагрев образцов с ζ -фазой при 1270–1470 К приводил к ее полному исчезновению [17,18]. В [18] сообщается, что измельчение карбида ТаС0 76 также приводит к исчезновению ζ-фазы; ранее такой эффект наблюдался в работе [9]. По экспериментальным данным [20], полученным методом диффузионных пар, фаза ξ -Та₄С_{3-r} содержит от 38.2 до 39.0 аt.% С, образуется по перитектоидной реакции при температуре ниже 2450 К и в равновесном состоянии существует в интервале температур ~ 1440-2450 К. При T > 1400 К фаза ξ -Та₄С_{3-x} может быть сохранена в метастабильно устойчивом состоянии в результате закалки. Выводы [17,18,20] об ограниченном интервале термической стабильности ξ -Та₄С_{3-*x*} противоречат данным [21,22].

В работах [21-24] тантал из газовой смеси TaCl₅ + Ar осаждали на графитовую подложку с температурой 2270-2770 К; в результате взаимодействия атомов Та и С на поверхности подложки формировалось карбидное покрытие состава $TaC_{0.745}$, содержащее кубический $\mathrm{TaC}_{\scriptscriptstyle \! V}$ и тригональный $\xi\text{-}\mathrm{Ta}_4\mathrm{C}_{3-x}$ карбиды; содержание ξ -Та₄С_{3-x} составляло ~ 80%. Изучение фазового состава карбидных образцов, полученных газофазнодиффузионным осаждением и содержанием ξ -Та₄С_{3-x}, показало [21,22], что в этих образцах фаза *ξ*-Та₄С_{3-х} стабильна при отжиге в вакууме или в атмосфере Ar в широком интервале температур от 300 до 3170 К. Авторы [21,22] полагают, что выводы о метастабильности фазы ξ -Та₄С_{3-x}, сделанные в работах [9,10,17,18], связаны с тем, что в этих работах ξ -фаза была получена в неравновесном состоянии, и потому отжиг или измельчение образцов приводили к ее превращению в кубический карбид тантала TaC_y . Действительно, данные [9,10,20] о положении фазовых границ, полученные методом диффузионных пар (диффузионным насыщением тантала углеродом), не являются равновесными, так как по сечению изучаемого образца имеется градиент концентрации компонентов. Поэтому выводы о температурной и концентрационной стабильности фаз и положении их границ, следующие из результатов метода диффузионных пар, могут быть не совсем верны. Повышенное давление, которое использовалось в работах [17–19] при синтезе карбидов тантала, также могло смещать концентрационные границы существования ξ -Ta₄C_{3-x} и тем самым приводить к синтезу неравновесной ξ -фазы, распадающейся при нагреве или измельчении.

2. Образцы и методики эксперимента

Большая (от 25 до 33-35 at.%) концентрация структурных вакансий в углеродной подрешетке карбидной фазы ξ -Та₄С_{3-x} \square_{1+x} является предпосылкой возможного атомно-вакансионного упорядочения. Однако экспериментальных доказательств неупорядоченного (статистического) или упорядоченного распределения атомов углерода и вакансий нет. Согласно [14], карбидные фазы ξ - M_4C_{3-x} (M = V, Nb, Ta) имеют тригональную (пр. гр. $R\bar{3}m$) структуру, в которой 12 атомов металла дважды занимают позиции 6(c), а узлы неметаллической подрешетки находятся в позициях 3(a), 3(b) и 6(c) с координатами (000); (001/2) и (00 \sim 5/12) соответственно (здесь и далее атомные координаты и параметры элементарной ячейки даются в гексагональных осях). В фазах ξ - $M_4C_{3-x}\square_{1+x}$ даже при x = 0 четверть всех позиций неметаллической подрешетки вакантны. Известно, что атомы углерода полностью занимают позиции 6(c), поэтому оставшиеся атомы С и структурные вакансии размещаются на позициях 3(a) и 3(b). Размещение атомов С и вакансий П по позициям 3(a) и 3(b) может быть статистическим или упорядоченным. При статистическом распределении атомы С с одинаковой вероятностью (1-x)/2 занимают позиции 3(a) и 3(b)неметаллической подрешетки. Упорядоченное распределение возможно в двух вариантах. В первом варианте атомы углерода с вероятностью (1 – x) занимают позиции 3(a), а позиции 3(b) вакантны; во втором варианте атомы C с вероятностью (1 - x) находятся в позициях 3(b), а вакансии — в позициях 3(a). Поскольку при таком упорядочении новые кристаллографические позиции не появляются, симметрия решетки сохраняется, и в дифракционном спектре будет наблюдаться только перераспределение интенсивности отражений, дополнительные отражения не будут возникать. Амплитуда рассеяния рентгеновского излучения атомами углерода С значительно меньше, чем амплитуда рассеяния атомами тантала Та. Поэтому в рентгеновском дифракционном эксперименте на карбиде ξ -Та₄С_{3-r} относительное изменение интенсивности отражений вследствие перераспределения атомов С очень мало; если же образец содержит примесные карбидные фазы и к тому же текстурирован (и то и другое характерно для образцов с ξ -фазой), выявить неупорядоченное или упорядоченное распределение атомов углерода и вакансий рентгеновским методом практически невозможно.

Экспериментально решить задачу о распределении атомов углерода С и структурных вакансий \square в ξ -Ta₄C_{3-x} можно с помощью дифракции нейтронов, но для изучения ξ -Ta₄C_{3-x} этот метод до сих пор не использовался. В настоящей работе распределение атомов С и вакансий \square в решетке ξ -Ta₄C_{3-x} впервые определено экспериментально; для этого использована структурная нейтронография в комплексе с высокоточной рентгеновской дифракцией и металлографией.

Образцы карбида тантала TaC_{0.68}-TaC_{0.78} синтезировали твердофазным спеканием порошковых смесей в вакууме $0.0013 \, \text{Pa} \, (10^{-5} \, \text{mm Hg})$ по трем разным температурным режимам: (1) спекание смеси TaC_{0.975} и Та в течение 6h при температуре 2270 K с промежуточным перетиранием продуктов после 3h спекания; (2) спекание смеси TaC_{0.75} и С в течение 6 h при температуре 2200-2400 К с промежуточным перетиранием после 3 h спекания; (3) спекание смеси TaC_{0.75} и С в течение 20 h при температуре 2200-2400 K с промежуточным перетиранием после 10h спекания. Состав образцов определялся химическим методом; состав поверхности спеченных образцов дополнительно контролировался с помощью рентгенофлуоресцентной спектроскопии (EDX-методом). Образец TaC_{0.685}, синтезированный по первому режиму, содержал большое количество ξ -Та₄С_{3-r}. В образцах, полученных по режимам (2) и (3), непосредственно после синтеза не было ξ -фазы, поэтому их дополнительно отжигали. Образцы, синтезированные по режиму (2), отжигали при 1470 К в течение 100 h, затем отжиг вели с понижением температуры до 570 К со скоростью 0.25 К · min⁻¹. Отжиг образцов, синтезированных по режиму (3), проводили в течение 35h при 1570 K, затем в течение 120 h температуру отжига снижали до 1170 К, дальнейшее снижение температуры до 570 К проводили со скоростью $0.25 \,\mathrm{K} \cdot \mathrm{min}^{-1}$. На рентгенограммах отожженных массивных образцов с составами $\sim TaC_{0.70}$ и $\sim TaC_{0.72}$ появились интенсивные отражения фазы *ξ*-Та₄С_{3-х}. Имеются сообщения [9,18] об исчезновении ζ-фазы после измельчения массивных образцов. Однако в настоящей работе такой эффект не обнаружен: на рентгенограммах порошков, полученных размолом массивных образцов $TaC_{0.685}$, $TaC_{0.70}$ и $TaC_{0.72}$, отражения ξ -фазы не исчезли.

Рентгеновские дифракционные измерения проводились в интервале углов $2\theta = 5-120^{\circ}$ с шагом $\Delta(2\theta) = 0.02^{\circ}$ методом Брегга-Брентано в Си $K\alpha_{1,2}$ излучении и модифицированным методом Гинье в Си $K\alpha_1$ излучении на автодифрактометре STADI-Р с трансмиссионной геометрией. Дифракцию нейтронов ($\lambda = 0.1532$ nm) измеряли в интервале углов 2θ от 10° до 125° в режиме пошагового сканирования с $\Delta(2\theta) = 0.1^{\circ}$ с временем накопления сигнала 1.0 min в каждой точке.

Подготовку шлифов для изучения микроструктуры и измерения микротвердости карбидов TaC, и ξ -Та₄С_{3-х} проводили на металлографическом комплексе, включающем аппараты PNEUMET-2, MOTOPOL-8 и MICROMET-1. Полировку образцов проводили до 12 степени чистоты, т.е. до появления зеркального блеска на обрабатываемой поверхности. Для выявления границ зерен подготовленные шлифы травили смесью кислот $(2HNO_3 + 6HF + 3H_2)$. Микроструктуру образцов исследовали в отраженном поляризованном белом свете с помощью оптического поляризационного микроскопа Neophot-2 (Carl Zeis Jena) при увеличении от 100 до 1000 раз. Микротвердость измеряли методом Виккерса на микротвердомере MICROMET-1 с автоматическим нагружением; величина нагрузки составляла 0.1 kg при времени нагружения 10 s.

Структура фазы *ξ*-Та₄C_{3-x} и функция распределения атомов углерода

Особенностью экспериментальных рентгено-И нейтронограмм, полученных стандартным методом Брегга-Брентано как с порошкообразных, так и с массивных образцов, является большая интенсивность отражений (0012) и (0024), в несколько раз превышающая их теоретическую интенсивность. Многократное усиление интенсивности этих отражений обусловлено осевым текстурированием образцов в направлении (001), т. е. вдоль оси c фазы ξ -Та₄С_{3-r}. Действительно, исследование микроструктуры массивных образцов карбида тантала обнаружило характерные пластинчатые, сильно текстурированные выделения ξ-фазы (рис. 1). Аналогичную микроструктуру образцов с ζ -фазой наблюдали авторы [9,10,15,16,18]. Исследование поверхности спеченного компактного (массивного) и порошкообразного образцов ТаС_{0.685}, содержащих большое количество *ξ*-Та₄С_{3-*x*}, с помощью рентгенофлуоресцентной спектроскопии (методом EDX) обнаружило на ней тантал Та, углерод С и примесный металлический Мg (рис. 2).

Заметное влияние текстуры образцов ξ -Tа₄C_{3-x} на интенсивность рентгеновских дифракционных отражений отмечено в работах [9,22]. Именно с наличием большей или меньшей осевой текстуры связаны существенные различия относительных интенсивностей дифракционных линий ξ -фазы, измеренных в работах [4,9,18,22,23]. Для того чтобы исключить влияние текстуры на интенсивность отражений, были проведены специальные дифракционные эксперименты: рентгенограммы снимали модифицированным методом Гинье, съемку проводили с большим накоплением сигнала в каждой точке; благодаря прецизионным измерениям при достаточно низком фоне отношение сигнал/шум было очень высоким и даже для отражений средней интенсивности достигало 30–40, а для наиболее сильных отражений 70–80 (при стандартной съемке тех же образцов TaC_y отношение сигнал/шум для средних линий не превышало 20). Использование при съемке излучения $CuK\alpha_1$ позволило исключить дублетные отражения и тем самым повысить точность измерений.

Исследование показало, что все образцы карбида тантала с ζ-фазой наряду с ней содержат кубический карбид ТаС, и малое количество гексагонального карбида Та₂С. На рис. 3 в качестве примера показаны рантгенограммы карбида TaC_{0.685}, снятые с порошка и массивного образца методами Брегга-Брентано и Гинье; на рис. 4 показана рентгенограмма карбида ТаС_{0 72}, снятая методом Брегга-Брентано (оба образца содержат большое количество ζ-фазы). На рентгенограммах, полученных методом Брегга-Брентано, отражения (0012) и (0024) имеют повышенную интенсивность вследствие осевого текстурирования образцов; съемка модифицированным методом Гинье (рис. 3, с) позволила исключить влияние текстуры на интенсивность дифракционных отражений. Из проведенного анализа следует, что совокупность дифракционных отражений фазы *ξ*-Та₄C_{3-x}, наблюдае-

Рис. 1. Микроструктура спеченных образцов $TaC_{0.685}$ (*a*) и $TaC_{0.72}$ (*b*) с пластинчатыми выделениями фазы ξ - Ta_4C_{3-x} . Образцы сильно текстурированы, подобная микроструктура характерна для всех образцов карбида тантала, содержащих ξ -фазу.

Рис. 2. EDX-спектры поверхности отдельного зерна (1) фазы ξ -Ta₄C_{3-x} и текстурированной поверхности (2) спеченного образца TaC_{0.685}, содержащего ~ 80 vol.% фазы ξ -Ta₄C_{3-x}; кроме тантала Ta и углерода C на поверхности имеются следы примесного магния Mg.

мых на рентгено- и нейтронограммах исследованных образцов, соответствует тригональной (пр. гр. $R\bar{3}m$) элементарной ячейке. Элементарная ячейка ξ -фазы карбида тантала, показанная на рис. 5 в гексагональных осях, содержит три формульные единицы TaC_{3-r} .

Точное определение параметров элементарных ячеек наблюдаемых фаз и фазового состава образца $TaC_{0.685}$ проводили по рентгенограмме, полученной модифицированным методом Гинье и исключающей влияние текстуры на интенсивность дифракционных отражений. Параметры элементарной ячейки тригональной (пр. гр. $R\bar{3}m$) фазы ξ -Ta₄C_{3-x} в гексагональных осях равны $a_h = 0.3123$ и $c_h = 3.0053$ nm. Для перехода от гексагональных параметров a_h и c_h к тригональным параметрам a_{tr} и α_{tr} элементарной ячейки использовали известные соотношения

$$\sin(\alpha_{\rm tr}/2) = 1.5 / \sqrt{3 + (c_h/a_h)^2},$$

$$a_{\rm tr} = c_h / \sqrt{9 - 12\sin^2(\alpha_{\rm tr}/2)}.$$
 (1)

Гексагональные индексы Миллера отражений $(h_h k_h l_h)$ ξ -фазы преобразовывали в тригональные индексы $(h_{\rm tr} k_{\rm tr} l_{\rm tr})$ с помощью соотношений

$$3h_{\rm tr} = -h_h + k_h + l_h, \qquad 3k_{\rm tr} = -h_h - 2k_h + l_h,$$

 $3l_{\rm tr} = 2h_h + k_h + l_h.$ (2)

Параметры элементарной ячейки в тригональных осях равны $a_{\rm tr} = 1.0179$ nm и $\alpha_{\rm tr} = 17.65^{\circ}$. Содержание в образце TaC_{0.685} кубического карбида TaC_y, гексагонального низшего карбида Ta₂C и ξ -фазы составляет ~ 18, ~ 1 и ~ 80–81 vol.%. Период кубической

Рис. 3. Рентгенограммы порошка карбида тантала $TaC_{0.685}$, содержащего ~ 80 vol.% фазы ξ -Ta₄C_{3-x}: при съемке методом Брегга–Брентано с поверхности (*a*) массивного (bulk) образца и с порошка (*b*) вследствие осевого текстурирования интенсивности отражений (0012) и (0024) заметно выше теоретических значений; *c* — съемка с порошка модифицированным методом Гинье с трансмиссионной геометрией позволила устранить влияние текстуры на интенсивность дифракционных отражений.

Рис. 4. Рентгенограмма порошка карбида тантала $TaC_{0.72}$, содержащего ~ vol.% фазы ξ - Ta_4C_{3-x} (съемка методом Брегга-Брентано, излучение $CuK\alpha_{1,2}$).

Рис. 6. Нейтронограмма ($\lambda = 0.1532$ nm) карбида тантала TaC_{0.685}, содержащего ~ 80 vol.% ξ -Ta₄C_{3-x} (TaC_{0.67}). На вставке показан фрагмент экспериментальной (*I*) нейтронограммы в сравнении с теоретическими нейтронограммами фазы ξ -Ta₄C_{3-x} (TaC_{0.67}) с упорядоченным (*2*) и неупорядоченным (*3*) распределением атомов С и вакансий по позициям 3(*a*) и 3(*b*) неметаллической подрешетки.

(пр. гр. $Fm\bar{3}m$) фазы равен $a_{B1} \sim 0.4418$ nm и соответствует карбиду состава $\sim \text{TaC}_{0.76}$; для гексагонального (пр. гр. $P6_3/mmc$) карбида Ta_2C периоды равны a = 0.3119 и c = 0.4934 nm. С учетом состава образца и содержания в нем кубического $\text{TaC}_{0.76}$ и гексагонального $\text{TaC}_{0.50}$ (Ta_2C) карбидов состав ξ -фазы соответствует $\sim \text{TaC}_{0.67}$ ($\text{TaC}_{2/3}$) или $\text{Ta}_4\text{C}_{3-x}$ с x = 1/3.

Соотношение интенсивностей наблюдаемых рентгеновских дифракционных отражений ξ -фазы соответствует или статистическому (неупорядоченному) распределению атомов углерода на позициях 3(a) и 3(b) неметаллической подрешетки, или же упорядоченному распределению, при котором атомы углерода занимают позиции 3(a), а позиции 3(b) вакантны. Другой вариант упорядочения, когда атомы С находятся в позициях 3(b), а вакансии в позициях 3(a), не согласуется с экспериментом. Косвенную информацию о распределении атомов С и вакансий \Box дало определение координат с учетом смещений атомов.

В элементарной ячейке фазы ξ -Та₄С_{3-x} двенадцать атомов Та дважды занимают позиции 6(c) с координатами (000.1274) и (000.291); позиции 6(c) с координатами (000.417) заняты атомами углерода, а позиции 3(a) и 3(b) с координатами (000) и (001/2) соответствуют узлам решетки, на которых атомы С могут размещаться неупорядоченно или упорядоченно (рис. 5). Атомы Та, занимающие позиции 6(c) с координатами (000.1274) в плоскостях, перпендикулярных оси *с* элементарной ячейки, смещены к плоскостям углеродной подрешетки, образованным узлами 3(b), и от плоскостей углеродной подрешетки, образованных узлами 3(a) (рис. 5, *a*). Наличие таких смещений косвенно указывает на разную заселенность атомами С позиций 3(a) и 3(b), т.е. на их возможное упорядочение. В неупорядоченной фазе ξ -Та₄C_{3-x} межплоскостные расстояния вдоль оси *с* должны быть одинаковы (рис. 5, *b*).

Фаза ξ -Та₄С_{3-*x*} имеет плотноупакованную металлическую подрешетку (рис. 5), но распределение атомов Та в ней отличается от распределений атомов металла в ГЦК и ГПУ подрешетках кубического карбида ТаС_y и низшего гексагонального карбида Та₂С. Металлическая подрешетка фазы ξ -Та₄С_{3-*x*} построена из чередующихся блоков, в которых атомы металла размещены так же, как в ГЦК и ГПУ подрешетках кубического и гексагонального карбидов ТаС_y и Та₂С, и является переходной между этими подрешетками. Последовательность металлических атомных слоев, перпендикулярных оси *c*, имеет вид *АВАВСАСАВСВС* [14].

Таблица 1. Межплоскостные расстояния d и относительные интенсивности I отражений (hkl) тригональной фазы ξ -Та₄C_{3-x} (TaC_{0.67}) на нейтронограмме ($\lambda = 0.1532$ nm) текстурированного порошка TaC_{0.685}

Отражения (hkl)	1	Отражения	T 0/
тригональной фазы	a, nm	других фаз	1,%
006	0.50212		11.5
009	0.33260		1.0
012	0.26512		< 1.0
104*	0.25459	$+(111)_{R1}$ TaC _y	3.5
0 0 12	0.25064	() 21)	2.5
$1 \ 0 \ -5$	0.24669		3.0
_	0.23234	(101) Ta ₂ C	3.5
107	0.22919	× / 2	100.0
_	0.22110	$(200)_{B1}$ TaC _v	21.0
1 0 10	0.20131	()21)	13.5
$1 \ 0 \ -11$	0.19202		3.0
_	0.18176	(102) Ta ₂ C	1.0
1 0 13	0.17613	. / 2	6.5
$1 \ 0 \ -14$	0.16809		21.0
$2 -1 0^*$	0.15606	$+(220)_{B1}$ TaC _v	96.5
$1 \ 0 \ -17$	0.14802	()21)	34.5
205	0.13230		9.0
$1 \ 0 \ -20$	0.13124		3.0
$2 \ 0 \ -7$	0.12884		43.5
_	0.12759	$(222)_{B1}$ TaC _v	11.5
0 0 24	0.12515		12.0
$2\ 0\ -10$	0.12323		10.0
2011	0.12120		2.0
20 - 13	0.11672		8.0
2014	0.11431		18.0
_	0.11033	$(400)_{B1}$ TaC _v	7.0
2017	0.10728	-	22.0
2 -1 21	0.10547		4.0
$3 - 1 4^*$	0.10116	$+(331)_{B1}$ TaC _y	4.5
3 - 1 7	0.09938		79.0
_	0.09881	$(420)_{B1} \text{ TaC}_{y}$	31.5
2 - 1 24	0.09764		72.0
$3 \ -1 \ 10$	0.09678		17.5
3 - 1 - 11	0.09563		6.0
3 -1 13	0.09343		11.5
3 - 1 14	0.09226		30.0
1 0 31	0.09136		38.0
3 0 0*	0.09015	$+(422)_{B1} \text{ TaC}_{y}$	80.5
3 -1 -17	0.08847		51.5

* Отражение тригональной ξ -фазы Ta₄C_{3-x} совпадает с отражением кубической фазы TaC_v.

Нейтронографический спектр карбида $\operatorname{TaC}_{0.685}$, содержащего ξ -Ta₄C_{3-x}, показан на рис. 6. Межплоскостные расстояния и относительные величины интенсивностей, соответствующие отражениям ξ -Ta₄C_{3-x}, приведены в табл. 1.

При анализе нейтронограммы использовалась модель тригональной (пр. гр. $R\bar{3}m$) элементарной ячейки с параметрами, определенными из рентгеновского спектра. Для идеальной (без атомных смещений) фазы ξ -Та₄C_{3-x} в результате упорядочения в первую очередь перио-

от тех семейств атомных плоскостей (003), (006), (009), где атомы С и вакансии размещаются раздельно — по сравнению со спектром неупорядоченной фазы в нейтронографическом спектре упорядоченной фазы отражения (003) и (009) усиливаются, а отражение (006) не меняется. Отражение (0012) возникает в результате дифракции от плоскостей, занятых только атомами тантала, поэтому его интенсивность при упорядочении тоже не меняется. В реальной ξ -фазе имеются значительные атомные смещения из позиций идеальной решетки, и потому перераспределение интенсивностей отражений более сложное. В нейтронографическом эксперименте характерным свидетельством упорядочения ξ -Та₄C_{3-r} является соотношение интенсивностей *I* соседних отражений (104), (0012), (10-5) и (107). Интенсивность I отражения (104) для неупорядоченной и упорядоченной фаз одинакова. Если принять I₍₁₀₄₎ за единицу, то для упорядоченной ξ -фазы $I_{(0012)} \approx 0.4$, $I_{(10-5)} \approx 0.6, I_{(107)} \approx 19$, а для неупорядоченной фазы $I_{(0012)} \approx 0.4, I_{(10-5)} \approx 1.6, I_{(107)} \approx 15$. Упорядочение приводит также к усилению отражений (10-14), (10-17), (20-7), (2014), (2017)... за счет ослабления отражений последовательности (10-11), (1013), (20-11), (2013).... Заметим, что в эксперименте интенсивность $I_{(10-5)}$ в полтора раза больше, чем $I_{(0012)}$ (рис. 6) — это характерно для упорядоченной фазы. В целом расчеты показали, что экспериментальная нейтронограмма соответствует фазе ξ -Та₄C_{3-x} (ТаС_{0.67}) с упорядоченным распределением атомов углерода на позициях 3(a) и полностью вакантными позициями 3(b), показанными на рис. 5, a).

дически перераспределяется интенсивность отражений

С учетом упорядоченного распределения атомов углерода С и вакансий П по позициям 3(*a*) и 3(*b*) структурную формулу ζ-фазы можно представить в виде $Ta_4C_2C_{1-x}\square_{1+x}$. Пусть распределение атомов углерода и вакансий между позициями 3(a) и 3(b) описывается параметром дальнего порядка *η*. Идеальное упорядочение с параметром дальнего порядка $\eta_{\rm max}=1$ достигается при x = 0, когда все позиции 3(a) заняты атомами C, а позиции 3(b) вакантны. При увеличении x, т.е. с ростом концентрации вакансий, максимальная величина параметра η_{\max} уменьшается, так как вакансии появляются на позициях 3(а). Зависимость максимальной величины параметра дальнего порядка от состава ζ -фазы имеет вид $\eta_{\max}(x) = (1 - x)$. В неупорядоченной ξ -фазе на позициях 3(a) и 3(b) равновероятно размещены 3(1 - x)атомов С, поэтому относительная концентрация атомов углерода, участвующих в упорядочении, равна (1 - x)/2. С учетом этого функцию, описывающую распределение атомов С на узлах 3(a) и 3(b) неметаллической подрешетки ζ-фазы, можно представить как

$$n(\mathbf{r}) = (1 - x)/2 + (\eta/2)\cos 6\pi z_h,$$
(3)

где $\mathbf{r} = (x_h y_h z_h)$ — узел $(x_h y_h z_h)$ неметаллической подрешетки, занимающий позицию 3(a) или 3(b) (координаты узла записаны в гексагональных осях). Функция распределения (3) представляет собой вероятность

Атом	Позиция и кратность	Атомные координаты в гексагональных осях			Значения функции
		x_h	y_h	z_h	распределения $n(x_h, y_h, z_h)$
C 1*	$3(a)^{*}$	0	0	0	$n_2 = (1-x)/2 + \eta/2$
С2 (вакансия)	3(b)	0	0	0.5	$n_1 = (1-x)/2 - \eta/2$
C 3	6(c)	0	0	0.4170	
Ta 1	6(c)	0	0	0.1274	
Ta 2	6(c)	0	0	0.2910	

Таблица 2. Тригональный (пр. гр. $R\bar{3}m(D_{3d}^5)$) карбид ξ -Та₄С_{3-x}

* В карбиде ξ -Та₄С_{3-x} при x = 0 и максимальной степени дальнего порядка атомы углерода С занимают все позиции 3(*a*); при x > 0и максимальном дальнем порядке атомы С занимают только часть позиций 3(*a*), другая часть позиций 3(*a*) вакантна; позиции 3(*b*) независимо от состава и степени порядка всегда вакантны, а позиции 6(*c*) неметаллической подрешетки всегда заполнены атомами углерода.

Рис. 7. Равновесная фазовая диаграмма системы Ta-C с учетом атомного упорядочения нестехиометрического кубического карбида тантала TaC_y. Положение тригональной (ромбоэдрической) фазы ξ -Ta₄C₃ показано в соответствии с полученными экспериментальными результатами; эта фаза не является упорядоченной фазой карбида TaC_y и существует в широком интервале температур от ~ 2450 до 300 К.

обнаружения атома углерода на узлах **r**, относящихся к позициям 3(a) и 3(b) неметаллической подрешетки фазы ξ -Ta₄C_{3-x}. При максимальном дальнем порядке $\eta_{\max}(x) = (1-x)$ функция (3) на всех узлах 3(a) принимает значение (1-x), а на узлах 3(b) эта же функция (3) равна 0. Иначе говоря, при максимальном дальнем порядке вероятность обнаружения атома C на узлах 3(a) равна (1-x), а на узлах 3(b) равна 0. В отсутствие порядка, когда $\eta = 0$, функция распределения $n(\mathbf{r}) = (1-x)/2$ на всех узлах 3(a) и 3(b) неметаллической подрешетки. Значения функции распределения (3) на узлах неметаллической подрешетки фазы ξ -Ta₄C_{3-x} даны в табл. 2.

В принципе при x > 0 размещение атомов углерода и вакансий, занимающих позиции 3(a), тоже может быть неупорядоченным или упорядоченным. В случае такого упорядочения на нейтронограмме в области малых углов $2\theta < 30^{\circ}$ должны появиться дополнительные сверхструктурные отражения. Экспериментально дополнительных отражений не обнаружено, поэтому можно полагать, что в изученной фазе ξ -Ta₄C_{3-x} (TaC_{0.67}) реализуется статистическое размещение атомов С и вакансий \Box на узлах 3(a).

4. Фазовая диаграмма системы Та-С

Ранее равновесная фазовая диаграмма системы Та-С с учетом атомного упорядочения нестехиометрического кубического карбида тантала ТаС, была рассчитана [1,2] методом функционала параметров порядка. Выполненное исследование структуры фазы *ξ*-Та₄C₃₋, позволило уточнить температурно-концентрационные границы области ее существования на фазовой диаграмме системы тантал-углерод. Построенная фазовая диаграмма системы Та-С показана на рис. 7. Положение фазовых границ вне области упорядочения кубического карбида ТаС, дано в соответствии с [25]. Фаза ξ -Та₄С_{3-r} не является упорядоченной фазой карбида TaC_v, так как имеет собственную (тригональную, а не кубическую) металлическую подрешетку. По данным [20], полученным методом диффузионных пар, ζ-фаза имеет узкую область гомогенности (содержание углерода от 38.2 до 39.0 at.%), появляется при температуре ниже 2450 К и не обнаруживается при T > 1400 К. Однако метод диффузионных пар не является термодинамически равновесным, так как по сечению изучаемого образца имеется градиент концентрации компонентов. Поэтому результаты [20] по температурной и концентрационной стабильности ζ-фазы карбида тантала могут быть не совсем верны. В частности, в настоящей работе установлено, что карбид ξ -Та₄C_{3-r} стабилен в компактном и дисперсном состояниях в широком интервале температур от 300 до $\sim 2400 \,\text{K}$ и по составу близок к TaC_{0.67}.

Как видно из рис. 7, единственной упорядоченной фазой нестехиометрического кубического карбида тантала TaC_y является фаза Ta_6C_5 . Действительно, исследование структуры упорядоченного карбида тантала нейтро-

Таблица 3. Термодинамические характеристики фазовых переходов порядок-беспорядок Ta₆C₅-TaC_y в нестехиометрическом карбиде тантала TaC_y

у	$T_{\rm trans}, {\rm K}$	$\Delta S_{\text{trans}}, \\ \mathbf{J} \cdot \text{mol}^{-1} \cdot \mathbf{K}^{-1}$	$\Delta H_{\text{trans}},$ kJ · mol ⁻¹
0.80	1399	1.10	1.54
0.82	1325	1.22	1.61
0.833	1270	1.26	1.60
0.84	1239	1.28	1.58
0.85	1190	1.28	1.52
0.86	1137	1.26	1.43
0.88	1020	1.15	1.17
0.90	887	0.98	0.87
0.92	738	0.79	0.58
0.94	576	0.58	0.34
0.95	489	0.49	0.24

нографическим методом [26,27] показало, что в нестехиометрическом карбиде тантала TaC_y в результате длительного медленного отжига при температуре от 1600 до 750 К образуется несоразмерная упорядоченная фаза, близкая к известным сверхструктурам типа M_6C_5 . Изучение магнитной восприимчивости [28] также подтвердило образование в карбиде тантала упорядоченной фазы типа M_6C_5 . Для карбидов $\text{TaC}_{0.83}$ и $\text{TaC}_{0.85}$ величины T_{trans} перехода Ta_6C_5 — TaC_y , найденные из измерений магнитной восприимчивости, равны 1110 и 1130 К; они хорошо согласуются со значениями T_{trans} , рассчитанными методом функционала параметров порядка [1,2] для фазовых превращений, связанных с упорядочением кубического карбида TaC_y (табл. 3).

Микротвердость карбидов тантала TaC_ν и *ζ*-Ta₄C_{3-x}

Микротвердость H_V нестехиометрических карбидов тантала TaC_y и ξ -Ta₄C_{3-x} измеряли на образцах, полученных твердофазным вакуумным спеканием прессованных порошковых смесей тантала и сажи. Синтезированные образцы дополнительно подвергали закалке для надежного получения неупорядоченного состояния и отжигу для достижения упорядоченного состояния. Пористость спеченных образцов TaC_y составляла от 15–16% для близких к стехиометрии карбидов TaC_{0.96–1.00} до 8% для карбидов TaC_{0.70–0.75} вблизи нижней границы области гомогенности кубической фазы со структурой *B*1; средний размер зерен составлял 10–20 μ m. По нейтронографическим данным [26,27], несоразмерная упорядоченная фаза, близкая к типу M_6C_5 , образуется в интервале составов TaC_{0.79}–TaC_{0.89}.

Микротвердость H_V отожженных образцов TaC_y, на нейтронограммах которых авторы [26,27] наблюдали сверхструктурные отражения, немного больше H_V закаленных неупорядоченных образцов TaC_y, но разница эта не превышает ошибок измерения (рис. 8).

Рис. 8. Микротвердость H_V карбида тантала: 1 — закаленный неупорядоченный и 2 — отожженный упорядоченный карбид TaC_y с базисной кубической структурой B1, 3 — ромбо-эдрический карбид ξ -Ta₄C_{3-x} (TaC_{0.67}).

При изменении состава карбида от TaC_{1.00} до TaC_{0.85} микротвердость увеличивается от 21 до 23-24 GPa, достигая максимума для карбида TaC_{0.83-0.85}, а затем уменьшается до 21 GPa на нижней границе области гомогенности кубического карбида тантала ТаС_v. Наличие максимума на полученной концентрационной зависимости микротвердости $H_V(y)$ карбида тантала согласуется с данными [29,30] и обусловлено тем, что в области ТаС_{0.81}-ТаС_{0.87} пластическая деформация осуществляется с преимущественным участием системы скольжения $\{100\}\langle 110\rangle$, требующей более высоких напряжений, тогда как роль системы скольжения $\{111\}\langle 110\rangle$, связанной в основном с М-М-взаимодействиями, уменьшается от TaC_{1.00} к TaC_{0.81-0.85}. Действительно, высокоэнергетическая М-М-полоса даже в стехиометрическом карбиде ТаС1 00 заполнена менее чем наполовину; при отклонении состава карбида от стехиометрии степень заполнения М-М-полосы уменьшается, и для карбида ТаС_{0.81-0.83} эта полоса становится почти пустой, тогда как относительный вклад ковалентных Та-С-взаимодействий увеличивается. Усиление ковалентной и ослабление металлической составляющих комбинированной химической связи в ТаС, проявляется в увеличении микротвердости при изменении состава карбида от ТаС1 00 до ТаС_{0.85}. При дальнейшем снижении содержания углерода в области составов от $TaC_{0.85}$ до $TaC_{0.70}$ уменьшается заполнение М-С-полосы, что ведет к ослаблению ковалентной составляющей химической связи и проявляется в постепенном уменьшении микротвердости.

Как видно из рис. 8, влияние отжига на микротвердость карбида TaC_y невелико. Размер доменов несоразмерной упорядоченной фазы, образующейся в отожженном карбиде TaC_y , составляет $\sim 200 \text{ nm}$ и меньше, чем размер зерен базисной неупорядоченной фазы. Однако степень дальнего порядка, достигаемая в упорядоченной фазе в результате проведенного отжига, заметно меньше максимальной. Действительно, согласно оценкам [1,2], сделанным на основе измерений периода базисной решетки a_{B1} , теплоемкости C_p и магнитной восприимчивости χ , параметр дальнего порядка в карбидах $\text{TaC}_{0.81}$ -TaC_{0.88} не превышает 0.6-0.7, т.е. значения $\eta = \eta_{\text{trans}}$ в точке перехода беспорядок-порядок. По-видимому, это является одной из причин слабого влияния отжига на микротвердость карбида тантала.

Микротвердость образца карбида тантала $TaC_{0.67}$, содержащего ~ 80 vol.% фазы ξ -Ta₄C_{3-x}, составляет ~ 9 GPa, что более чем в 2 раза меньше микротвердости ближайшего по составу неупорядоченного кубического карбида $TaC_{0.70}$ (рис. 8). По данным [23], микротвердость фазы ξ -Ta₄C_{3-x} не превышает 1.1 GPa. Существенно меньшая величина микротвердости ξ -фазы по сравнению с кубическим карбидом тантала обусловлена в первую очередь ее структурой, в которой важную роль играют дефекты упаковки. С учетом структуры ξ -фазы ее микротвердость, по-видимому, должна быть анизотропна, но выявить это на поликристаллическом образце $TaC_{0.67}$ не удалось.

6. Заключение

В целом в результате проведенного исследования установлено, что карбид ξ -Та₄С_{3-x} является самостоятельным нестехиометрическим соединением системы Та-С наряду с двумя другими нестехиометрическими соединениями — гексагональным Та₂С_v и кубическим TaC_y карбидами. Карбид ξ - Ta_4C_{3-x} стабилен в компактном и дисперсном состояниях в широком интервале температур от 300 до ~ 2400 К. По-видимому, выводы [6,7,12-14] о метастабильности фазы *ξ*-Та₄С_{3-к} связаны с тем, что в этих работах ζ-фазу получали в неравновесном состоянии и потому отжиг или измельчение образцов приводили к ее превращению в кубический карбид TaC_v. Карбид ξ -Ta₄C_{3-x} имеет тригональную (пр. гр. $R\bar{3}m$) симметрию с упорядочением в неметаллической подрешетке: при *x* = 0 и максимальной степени дальнего порядка атомы углерода С занимают все позиции 3(a), тогда как позиции 3(b) полностью вакантны; при x > 0 и максимальном дальнем порядке атомы С занимают часть позиций 3(а), а вакансии все позиции 3(b) и часть позиций 3(a). Металлическая плотноупакованная подрешетка фазы *ξ*-Та₄C_{3-r} является переходной между металлическими подрешетками кубического и гексагонального карбидов TaC_v и Ta₂C.

Список литературы

- А.И. Гусев, А.А. Ремпель. Нестехиометрия, беспорядок и порядок в твердом теле. УрО РАН, Екатеринбург (2001). 580 с.
- [2] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides. Springer, Berlin– Heidelberg–N.Y.–London (2001). 607 p.
- [3] А.И. Гусев, А.А. Ремпель. Структурные фазовые переходы в нестехиометрических соединениях. Наука, М. (1988). 308 с.

- [4] R. Lesser, G. Brauer. Z. Metallkunde 49, 12, 622 (1958).
- [5] G. Brauer, R. Lesser. Z. Metallkunde **50**, *1*, 8 (1959).
- [6] E. Rudy, H. Nowotny. Monatsh. Chemie 94, 3, 507 (1963).
- [7] E. Rudy, F. Benesovsky, L. Toth. Z. Metallkunde 54, 4, 345 (1963).
- [8] E. Rudy, D.P. Harmon. In: Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Pt I. Related Binary Systems. Vol. V. Tech. Report AFML-TR-65-2. Wright-Patterson Air Force Base, Metals and Ceramics Division. Air Force Materials Laboratory. Ohio, USA (1965). P. 1.
- [9] I. Zaplatinsky. J. Amer. Ceram. Soc. 49, 2, 109 (1966).
- [10] W.F. Brizes, J.M. Tobin. J. Amer. Ceram. Soc. 50, 2, 115 (1967).
- G.J. Santoro, H.B. Probst. In: Advances in X-Ray Analysis. Vol. 7 / Ed. W.M. Mueller, M. Fay. Plenum Press, N. Y. (1964).
 P. 126.
- [12] E. Rudy, J. Progulski. Planseeber. Pulvermet. 15, 1, 13 (1967).
- [13] J.D. Venables, M.H. Meyerhoff. In: Solid State Chemistry. Proc. of 5th Int. Mater. Res. Symp. NBS Special Publ. 364. NBS Publ., Berkley, California (1972). P. 583.
- [14] K. Yvon, E. Parthe. Acta Crystallogr. B 26, 2, 149 (1970).
- [15] J.L. Martin, A. Rocher, B. Jouffrey, P. Costa. Philosoph. Mag. 24, 192, 1355 (1971).
- [16] D.J. Rowcliffe, G. Thomas. Mater. Sci. Engineer. 18, 2, 231 (1975).
- [17] Б.И. Мархасев, Н.И. Пиоро, В.В. Клюгвант, Ю.Л. Пилиповский, Ю.М. Шаматов, Е.И. Гешко. Изв. АН СССР. Неорган. материалы 19, 12, 1997 (1983).
- [18] Б.И. Мархасев, Н.И. Пиоро, В.В. Клюгвант, Ю.Л. Пилиповский, Ю.М. Шаматов, Е.И. Гешко. Изв. АН СССР. Неорган. материалы 18, 12, 2001 (1982).
- [19] Б.И. Мархасев, В.В. Клюгвант, Ю.Л. Пилиповский, Ю.М. Шаматов, С.С. Джамаров, Е.И. Гешко. Изв. АН СССР. Неорган. материалы 20, 10, 1652 (1984).
- [20] H. Wiesenberger, W. Lengauer, P. Ettmayer. Acta Mater. 46, 2, 651 (1998).
- [21] Г.М. Демяшев, М.А. Хусаинов, Р.К. Чужко. Изв. АН СССР. Сер. физ. 48, 9, 1693 (1984).
- [22] М.А. Хусаинов, Д.М. Умидов. Изв. АН СССР. Неорган. материалы 21, 1, 147 (1985).
- [23] М.А. Хусаинов, Г.М. Демяшев, М.М. Мышляев. Металлы 5, 144 (1990).
- [24] М.А. Хусаинов, Г.М. Демяшев, М.М. Мышляев. Металлы 6, 160 (1990).
- [25] Phase Equilibria Diagrams. Phase Diagrams for Ceramists. Vol. X / Ed. A.E. McHale. Amer. Ceram. Soc. Publ., Westerville, Ohio, USA (1994). P. 265.
- [26] A.I. Gusev, A.A. Rempel, V.N. Lipatnikov. J. Physics: Cond. Matter 8, 43, 8277 (1996).
- [27] В.Н. Липатников, А.А. Ремпель. Письма в ЖЭТФ 81, 7, 410 (2005).
- [28] A.I. Gusev, A.A. Rempel, V.N. Lipatnikov. Phys. Stat. Sol. (a) 106, 2, 459 (1988).
- [29] G. Santoro. Trans. Met. Soc. AIME 227, 6, 1361 (1963).
- [30] L. Ramqvist. Jernkontorets Annaler. 152, 9, 467 (1968).