Ядерный квадрупольный резонанс ¹²¹Sb и ¹²³Sb и гетерофазная структура в сегнетоэлектрике SbSI

© С.Н. Попов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: Root@prf.shuv.ioffe.rssi.ru

(Поступила в Редакцию 1 декабря 1998 г.)

Исследовались температурные зависимости частот и ширины линий ЯКР ¹²¹Sb (для перехода $\pm 1/2 \rightarrow \pm 3/2$) и ¹²³Sb (для переходов $\pm 1/2 \rightarrow \pm 3/2$ и $\pm 3/2 \rightarrow \pm 5/2$), а также температурные зависимости главных компонент и параметра асимметрии тензора градиента электрического поля на ядре ¹²³Sb в кристалле SbSI в интервале температур 115–325 К. Обсуждаются динамические и статические факторы, определяющие характер этих зависимостей. Линия ($\pm 1/2 \rightarrow \pm 3/2$) в спектре ЯКР ¹²¹Sb в узком температурном интервале (0.5 K) вблизи сегнетоэлектрического фазового перехода ($T_c = 293$ K) наблюдается в виде дублета, что связано с возникновением в кристалле макроскопической гетерофазной структуры.

Возникновение гетерофазных макроскопических структур при фазовых переходах в ряде кристаллов продолжает привлекать к себе повышенное внимание. Особый интерес в этой связи представляет исследование критического поведения ядерных квадрупольных взаимодействий вблизи фазовых переходов в сегнетоэлектриках и сегнетоэластиках. В настоящей работе проведено исследование ядерного квадрупольного резонанса (ЯКР) ¹²¹Sb и ¹²³Sb в сегнетоэлектрическом кристалле сульфоиодида сурьмы. Ранее сообщалось о проявлении в ЯКР эффекта сегнетоэлектрического фазового перехода в SbSI [1]. Настоящая работа посвящена более детальному исследованию ЯКР сурьмы в SbSI.

Кристаллы SbSI имеют структуру, состоящую из параллельных молекулярных цепочек. Кристаллическая решетка имеет ромбическую симметрию. При $T_c = 293 \, {
m K}$ в SbSI происходит структурный фазовый переход первого рода $D^{16}_{2h}
ightarrow C^9_{2v}$ с возникновением при $T \leq T_c$ спонтанной поляризации [2-4]. Элементарная ячейка SbSI содержит четыре формульных единицы. Двойные цепи $(Sb_2S_2I_2)_n$ располагаются вдоль кристаллографической оси с, которая в сегнетофазе совпадает с сегнетоэлектрической осью. Структура SbSI может быть описана с помощью модели ионного кристалла Sb³⁺S²⁻I⁻ [5], однако допускается возможность частично ковалентной связи. В [6] предложена следующая модель внешних электронных оболочек: $Sb^+ - (5p)^2$; $S^- - (3p)^4$; $I^- - (5p)^6$. Таким образом, йод может находиться в чисто ионном состоянии, а сурьма и сера в цепочках могут быть связаны ковалентно. Результаты исследования методом Мессбауэра [7] также свидетельствуют о наличии преимущественно ионных связей галогена и существенной ковалентности связей Sb-S.

В настоящей работе эксперимент выполнен с помощью импульсного радиоспектрометра ИС-2. Методика эксперимента описана в работе [8]. Измерения проводились на образце SbSI, имевшим цилиндрическую форму диаметром 9 и длиной 45 mm. При этом кристаллографическая ось c была направлена вдоль оси цилиндра.

Статическая или неоднородная ширина линий определялась по ширине сигнала двухимпульсного спинового эха: $\Delta \nu_{1/2} = 0.88/\Delta t_{1/2}$ (здесь $\Delta \nu_{1/2}$ — ширина линии на половине высоты, $\Delta t_{1/2}$ — ширина эха на половине высоты) [8]. Четкое изображение формы эха получалось в результате многоканального накопления сигнала. Для подавления сигнала электроакустического (фононного) эха [9] и пьезоэлектрического звона при $T < T_c$ образец помещался в полиэтиленовый контейнер, наполненный силиконовым маслом.

1. Результаты эксперимента

Были исследованы температурные зависимости трех резонансных частот, $\nu_1(\pm 1/2 \rightarrow \pm 3/2)$ и $\nu_2(\pm 3/2 \rightarrow \pm 5/2)$ для ¹²³Sb (спин I = 7/2) и $\nu_3(\pm 1/2 \rightarrow \pm 3/2)$ для ¹²¹Sb (I = 5/2), а также температурные зависимости ширины соответствующих линий, $\Delta \nu_{1/2}^{(1)}$, $\Delta \nu_{1/2}^{(2)}$ и $\Delta \nu_{1/2}^{(3)}$, включая область фазового перехода при $T_c = 293$ К. С помощью экспериментальных значений частот ν_1 и ν_2 были вычислены значения главных компонент тензора градиента электрического поля (ГЭП), V_{ZZ} , V_{YY} , V_{XX} и параметра асимметрии ГЭП, η , для ¹²³Sb путем решения секулярного уравнения для уровней энергии квадрупольного взаимодействия для спина I = 7/2. Сделана серия записей линии ($\pm 1/2 \rightarrow \pm 3/2$) ЯКР ¹²¹Sb при различных температурах вблизи фазового перехода. Были получены следующие результаты.

1) Экспериментальные зависимости $\nu(T)$ выше T_c линейны для всех трех частот, имеют четкую аномалию при $T = T_c$ и нелинейный ход ниже T_c .

2) Экспериментальные зависимости $\Delta \nu_{1/2}^{(1)}(T)$, $\Delta \nu_{1/2}^{(2)}(T)$ и $\Delta \nu_{1/2}^{(3)}(T)$, так же как и $\nu_1(T)$, $\nu_2(T)$ и $\nu_3(T)$, практически линейны выше T_c в исследованном интервале температур; при $T = T_c$ они испытывают резкую аномалию и имеют нелинейный ход ниже T_c .

3) Температурные зависимости η, V_{ZZ}, V_{YY} и V_{XX} в параэлектрической области линейны, имеют резкую аномалию в области фазового перехода и нелинейный ход в сегнетоэлектрической области.

4) В узком температурном интервале ($\sim 0.5 \,\text{K}$) вблизи T_c линия ($\pm 1/2 \rightarrow \pm 3/2$) ЯКР ¹²¹Sb наблюдается в виде дублета, компоненты которого разнесены более чем на 1 МHz.

2. Обсуждение результатов

В эксперименте ось *с* кристалла SbSI была направлена вдоль оси катушки, т. е. параллельно полю H_1 , а переходы $\pm 1/2 \rightarrow \pm 3/2$ могут индуцироваться только составляющими радиочастотного поля H_1 , перпендикулярными главной оси *Z* тензора градиента электрического поля. Следовательно, главная компонента ГЭП V_{ZZ} перпендикулярна оси *c* и направлена вдоль самой короткой химической связи между ионами сурьми и серы (2.49 Å, рис. 1), внешние 5*p*- и 3*p*-электроны которых вносят основной вклад в величину ГЭП и определяют ковалентный характер связи.

Гамильтониан квадрупольного взаимодействия в системе главных осей тензора градиента электрического поля X, Y, Z имеет вид

$$H_{Q} = \frac{e^{2}qQ}{4I(2I-1)} \left\{ 3I_{Z}^{2} - I(I+1) + \frac{1}{2}\eta(I_{+}^{2} + I_{-}^{2}) \right\}.$$
 (1)

Здесь $eq \equiv V_{ZZ}$, $\eta \equiv (V_{XX} - V_{YY})/V_{XX}$ — параметр асимметрии ГЭП, Q — квадрупольный момент ядра, $I^2 = I_X^2 + I_Y^2 + I_Z^2$ и $I_{\pm} = I_X \pm iI_Y$ — операторы спина ядра в системе осей X, Y, Z. Главные компоненты ГЭП удовлетворяют соотношениям:

$$|V_{ZZ} > |V_{YY}| > |V_{XX}|,$$

 $V_{ZZ} + V_{YY} + V_{XX} = 0.$ (2)

Из (1) очевидно, что изменение двух параметров ГЭП, V_{ZZ} и η , полностью определяет изменение частот ЯКР при изменении температуры кристалла.

Экспериментальные зависимости $\nu_1(T), \nu_2(T)$ и $\nu_3(T)$ в параэлектрической фазе SbSI (рис. 2-4) обусловлены анизотропией теплового расширения кристаллической решетки [10]. Роль динамического байеровского усреднения ГЭП под воздействием тепловых колебаний кристаллической решетки, эффективного главным образом для качательно-вращательных движений молекул, в случае SbSI, по-видимому, менее значительна. Четкие аномалии $\nu(T)$ вблизи T_c , очевидно, связаны с фазовым переходом. По нашему предположению, эти аномалии вызваны статическим искажением ромбической решетки SbSI при $T \leq T_c \ (D^{16}_{2h} \to C^9_{2\nu})$. Это статическое искажение, зависящее от $|T_c - T|$, воздействует на величину главных компонент ГЭП, а следовательно, и на параметр асимметрии *η*. Обращает на себя внимание большое различие аномалий $\nu_1(T)$ и $\nu_2(T)$ вблизи T_c , а также их неодинаковое поведение ниже Т_с (рис. 2). Это можно объяснить резким увеличением параметра асимметрии η

Рис. 1. Схематическое изображение двойной молекулярной цепочки $(Sb_2S_2I_2)_n$ для параэлектрического состояния SbSI. Углы и длины связей по [5]. Размеры параллелепипеда не связаны с параметрами элементарной ячейки.

(рис. 5) при изменении локальной симметрии в месте расположения атома сурьмы при $T \leq T_c$ [5]. Значения параметра асимметрии были вычислены, исходя из секулярного уравнения для уровней энергии квадрупольного взаимодействия для спина I = 7/2

$$E^{4} - 42\left(1 + \frac{\eta^{2}}{3}\right)E^{2} - 64(1 - \eta^{2})E + 105\left(1 + \frac{\eta^{2}}{3}\right)^{2} = 0 \ [11]$$
(3)

и отношения экспериментальных значений частот ν_2 и u_1 для переходов $\pm 3/2 \rightarrow \pm 5/2$ и $\pm 1/2 \rightarrow \pm 3/2$ в 123 Sb соответственно. Как известно, при изменении симметрии ГЭП от аксиальной ($\eta = 0$ при $V_{XX} = V_{YY}$) до максимально несимметричной, неосевой ($\eta = 1$ при $V_{XX} = 0$; $V_{YY} = -V_{ZZ}$), уровень энергии квадрупольного взаимодействия $E_1(m = \pm 1/2)$ для ядер со спинами $I \ge 5/2$ понижается, а уровень $E_2(m = \pm 3/2)$ повышается [12]. Уровень $E_3(m = \pm 5/2)$ также повышается, но в меньшей степени, приближаясь к Е2. В результате за счет увеличения η частота перехода $1/2 \rightarrow 3/2$ повышается, а частота перехода $3/2 \rightarrow 5/2$ понижается. При этом отношение частот $\nu(\pm 3/2 \to \pm 5/2)/\nu(\pm 1/2 \to \pm 3/2)$ меняется от 2 до 0.7 при изменении η от 0 до 1. Действительно, как видно из рис. 6, характер температурных зависимостей уровней энергии квадрупольного взаимодействия, вычисленных для 123 Sb из уравнения (3), отражает указанную закономерность. Температурные зависимости

Рис. 2. Температурная зависимость частот ν_1 (переход $\pm 1/2 \rightarrow \pm 3/2$) (1) и ν_2 (переход $\pm 3/2 \rightarrow \pm 5/2$) (2), а также ширины линии ($\pm 1/2 \rightarrow \pm 3/2$) $\Delta \nu_{1/2}^{(1)}$ (3) ЯКР ¹²³Sb в кристалле SbSI.

Рис. 3. Температурная зависимость частоты ν_2 (переход $\pm 3/2 \rightarrow \pm 5/2$) (1) и ширины линии ($\pm 3/2 \rightarrow \pm 5/2$) $\Delta \nu_{1/2}^{(2)}$ (2) ЯКР ¹²³Sb в SbSI.

Рис. 4. Температурная зависимость частоты ν_3 (переход $\pm 1/2 \rightarrow \pm 3/2$) (1) и ширины линии ($\pm 1/2 \rightarrow \pm 3/2$) $\Delta \nu_{1/2}^{(3)}$ (2) ЯКР ¹²¹Sb в SbSI.

Рис. 5. Температурная зависимость параметра асимметрии тензора градиента электрического поля, η , на ядре ¹²³Sb в кристалле SbSI.

Рис. 6. Температурная зависимость уровней энергии квадрупольного взаимодействия для ¹²³Sb: $I - E_{\pm 1/2}$, $2 - E_{\pm 3/2}$, $3 - E_{\pm 5/2}$. По оси ординат $A = e^2 q Q/4I(2I-1)$ [11].

Рис. 7. Температурная зависимость главных компонент тензора градиента электрического поля на ядре ¹²³Sb: $1 - V_{ZZ}$, $2 - V_{YY}$, $3 - V_{XX}$.

главных компонент ГЭП, V_{ZZ} , V_{YY} и V_{XX} , представленные на рис. 7, дополняют общую картину, адекватную тому факту, что частота ν_1 (рис. 1) в нашем эксперименте повышается с понижением температуры при $T \leq T_c$ как за счет увеличения V_{ZZ} , так и за счет η , а поведение частоты ν_2 отражает взаимно противоположное действие этих двух факторов. Главные компоненты ГЭП, создаваемого внешним окружением атома сурьмы, вычислялись, исходя из значений η и $E_m(m = 1/2; 3/2; 5/2)$, полученных при решении уравнения (3) и значения фактора антиэкранирования для сурьмы: $(1 - \gamma_{\infty}) = 17$ $(q = q_{ext}(1 - \gamma_{\infty}))$. Резонансную частоту для перехода $\pm 1/2 \rightarrow \pm 3/2$ в общем виде можно записать как

$$\nu_1 = (E_{3/2} - E_{1/2})/h,$$

поскольку значения E в (3) определены через константу квадрупольной связи $e^2 q Q$ — в единицах $3e^2 q Q/4I(2I-1)$ [11], получаем

$$\nu_1 = \frac{3(E_{3/2} - E_{1/2})e^2qQ}{4I(2I-1)h}$$

Отсюда, используя (2), окончательно получаем

$$egin{aligned} V_{ZZ} &= eq/(1-\gamma_{\infty}) = rac{4I(2I-1)h
u_1}{51eQ(E_{3/2}-E_{1/2})}, \ V_{YY} &= -rac{1}{2}(\eta+1)V_{ZZ}, \ V_{XX} &= rac{1}{2}(\eta-1)V_{ZZ}. \end{aligned}$$

Как уже отмечалось выше, градиент V_{ZZ} , по-видимому, направлен вдоль самой короткой связи Sb-S, перпендикулярной оси кристалла с (на рис. 1 эта связь выделена более жирной линией). Поскольку йод в SbSI находится вероятнее всего в чисто ионном состоянии, то можно полагать, что основной вклад в градиенты V_{YY} и V_{XX} вносят связи Sb-S, которые образуют цепочки -S-Sb-S-, параллельные оси с кристалла (рис. 1). Увеличение $\left|V_{ZZ}\right|$ и V_{YY} , а также уменьшение V_{XX} с понижением температуры при $T \leq T_c$ (рис. 7) согласуются с рентгенографическими данными [5] для SbSI при $T = 35^{\circ}$ C (в парафазе) и при T = 5°C (в сегнетофазе). Согласно [5], межатомное расстояние в короткой связи Sb-S с понижением температуры от 35 до 5°С уменьшается $(\Delta L/L \approx -0.68 \cdot 10^{-2})$, а две другие связи Sb–S в цепочках -S-Sb-S- ведут себя противоположным образом: одна из связей укорачивается ($\Delta L/L \approx -5.75 \cdot 10^{-2}$), а вторая — удлиняется ($\Delta L/L \approx 2.57 \cdot 10^{-2}$). Очевидно, что укорачивающаяся связь Sb-S в цепочке ответственна за увеличивающийся градиент, т. е. за V_{YY}, а удлиняющаяся связь Sb-S — за V_{XX}. Таким образом, ориентация тензора градиента электрического поля, создаваемого внешним электрическим окружением атома сурьмы в кристалле SbSI, определяется направлением химических связей сурьмы с тремя атомами серы. Здесь следует заметить, что если направление главной оси Z вдоль самого короткого расстояния Sb-S можно считать, по-видимому, достаточно вероятным, то главные оси У и Х только близки по направлению к двум другим связям Sb-S, но не совпадают полностью. Это связано с тем, что все три взаимно примыкающих угла, образованных направлениями связей сурьмы с тремя атомами серы, не являются 90-градусными углами даже в параэлектрической фазе SbSI (один угол равен 95.4°, два других угла — по 84.8° [6], рис. 1). Именно поэтому при *T* > *T_c* параметр асимметрии тензора ГЭП не равен нулю, а имеет конечное значение ($\eta \approx 0.088$) (рис. 5), и компоненты ГЭП V_{YY} и V_{XX} несколько отличаются друг от друга по величине (рис. 7), несмотря на равенство соответствующих расстояний Sb–S (2.76 Å [6], рис. 1). Более точно определить ориентацию тензора градиента электрического поля относительно кристаллографических осей (по зеемановскому расщеплению уровней в магнитном поле) не представлялось возможным из-за неупорядоченности направлений осей а и b в образце, на котором проводились измерения.

В сегнетоэлектрической фазе SbSI ($T < T_c$) на величины V_{ZZ} и η действуют: 1) непосредственно статические смещения атомов, вызванные нестабильностью кристаллической решетки по отношению к мягкой моде [13] и определяемые амплитудой параметра порядка $\rho(T_c - T)$; 2) спонтанная сегнетоэлектрическая деформация решетки $\varepsilon(T_c - T)$, возникающая при $T < T_c \ (\varepsilon \propto \rho^2)$. Из простых симметрийных рассмотрений следует, что как изменение градиента поля δV_{ZZ} , вызванное разовым переходом, так и изменение параметра асимметрии $\delta\eta$ пропорциональны ρ^2 и ε . Эти зависимости в сильной степени определяют характер кривых $\nu_1(T)$, $\nu_2(T)$ и $\nu_3(T)$ ниже T_c . Другим фактором, влияющим на температурную зависимость ν_1 , ν_2 и ν_3 , является сильная анизотропия теплового расширения кристаллической решетки SbSI при $T \leq T_c$ [11]. Роль уже упоминавшегося байеровского усреднения градиента в сегнетоэлектрической фазе SbSI еще менее значительна, чем в парафазе, что, вообще говоря, характерно для сегнетоэлектриков с фазовым переходом типа смещения.

Аномалии температурной зависимости ширины линий, $\Delta
u_{1/2}^{(1)}(T), \ \Delta \nu_{1/2}^{(2)}(T)$ и $\Delta \nu_{1/2}^{(3)}(T)$, вблизи T_c (рис. 2–4), очевидно, связаны с фазовым переходом. Эти аномалии могут быть вызваны неоднородным распределением в кристалле SbSI статического искажения ромбической решетки при фазовом переходе, приводящем к пространственной неоднородности температуры фазового перехода. Статическая или неоднородная ширина линий ЯКР, как известно, определяется наличием в кристалле неупорядоченных искажений решетки из-за точечных дефектов, дислокаций и остаточных напряжений, приводящих к разбросу значений ГЭП в результате искажения внутримолекулярных взаимодействий. Поэтому естественно полагать, что неоднородность статических смещений атомов и неоднородность спонтанной деформации решетки вблизи Тс, связанные с неоднородным распределением температуры фазового перехода, вызывают значительный дополнительный разброс значений градиента поля на ядрах сурьмы, что и приводит к резкому увеличению ширины линий. Разница между аномалиями $\Delta \nu_{1/2}(T)$ для ν_1 и ν_2 , очевидно, также связана с разным вкладом изменения параметра асимметрии η в изменение частот.

Рис. 8. Спектр ЯКР ¹²¹Sb (переход $\pm 1/2 \rightarrow \pm 3/2$) при разных температурах в области сегнетоэлектрического фазового перехода в кристалле SbSI ($T_c = 293$ K). T (K): 1 - 294.6, 2 - 293.6, 3 - 293.1, 4 - 293.0, 5 - 292.8, 6 - 292.4, 7 - 291.8.

дублетной Возникновение структуры линии $(\pm 1/2 \rightarrow \pm 3/2)$ SKP ¹²¹Sb в узком температурном интервале 292.8-293.1 К (рис. 8), очевидно, связано с возникновением при фазовом переходе в SbSI так называемой "полосатой" структуры [14]. Эта структура построена из чередующихся областей парафазы и сегнетофазы с плоскими межфазными границами, которые по своей ориентации близки к (101) [14]. Известно, что макроскопические пространственно-неоднородные состояния возникают при структурных фазовых переходах в целом ряде соединений. В большинстве случаев гетерофазные структуры имеют нерегулярный характер. Одним из исключений является кристалл каломели (Hg_2Cl_2) , в котором при сегнетоэластическом фазовом переходе ($T_c = 186 \, {\rm K}$) возникает регулярная гетерофазная структура, приводящая к расщеплению линии ЯКР ³⁵Cl [8]. Однако в отличие от SbSI это расщепление очень мало ($\Delta \nu \approx 6 \, \mathrm{kHz}$) (в Hg₂Cl₂ фазовый переход второго рода, близкий к трикритической точке) и обнаруживается только по появлению тонкой структуры спинового эха в виде биений [8].

Общая картина эволюции линии ЯКР сурьмы, представленная на рис. 8, отражает кинетику фазового перехода в SbSI: с понижением температуры постепенно угасает линия, соответствующая параэлектрическому состоянию кристалла, и нарастает линия, соответствующая сегнетоэлектрическому состоянию. Как видно из рис. 8, величина температурного интервала, в пределах которого наблюдается дублет линии, составляет примерно 0.3 К, что согласуется с литературными данными по оптическому наблюдению полосатой структуры в SbSI [14]. Согласно [14], при фазовом переходе в SbSI происходит зарождение областей новой фазы, которые растут с изменением температуры, и при некоторой температуре весь кристалл разбивается на чередующиеся темные и светлые полосы с плоскими фазовыми границами. Температурный интервал наблюдения этого явления составляет 0.5 К.

Возникновение крупномасштабных гетерофазных структур при фазовых переходах в твердых телах по современным представлениям связывается с флуктуационным механизмом образования зародышей несимметричной фазы в условиях близости перехода к трикритической точке.

Автор выражает благодарность В.В. Леманову за полезное обсуждение результатов работы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 96-02-16893).

Список литературы

- С.Н. Попов, Н.Н. Крайник, И.Е. Мыльникова. Изв. АН СССР. Сер. физ. 33, 2, 271 (1969); S.N. Popov, N.N. Krainik, I.E. Mylnikova. In: Proceedings of the Second International Meeting on Ferroelectricity, Kioto (1969); J. Phys. Soc. J. 28, Suppl. 120 (1970).
- [2] E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel. Phys. Rev. 127, *6*, 2036 (1962).
- [3] E. Dönges. Z. Anorg. Allg. Chemie 263, 112 (1950).
- [4] R. Arndt, A. Niggli. Naturwiss 51, 158 (1964).
- [5] A. Kikuchi, Y. Oka, E. Sawaguchi. J. Phys. Soc. J. 23, 337 (1967).
- [6] Y. Yamada, H. Chihara. J. Phys. Soc. J. 21, 2085 (1966).
- [7] Т.А. Химич, В.Ф. Белов, О.К. Жуков, В.А. Юрин, Л.Н. Кораблин, М.Н. Шипко, А.Н. Лобачев, В.И. Пополитов. ФТТ 13, 1507 (1971).
- [8] С.Н. Попов. ФТТ 39, 7, 1287 (1997).
- [9] С.Н. Попов, Н.Н. Крайник. ФТТ **12**, *10*, 3022 (1970); G.A. Smolenskii, N.N. Krainik, S.N. Popov. In: Some Phenomena in Crystals Lacking an Inversion Center. Sov. Sci. Rev. Phys. **A6**, 261 (1985).
- [10] А.В. Гомоннай, Б.М. Коперлес, И.И. Грошик, М.И. Гурзан. ФТТ 22, 3, 930 (1980).
- [11] T.P. Das, E.L. Hahn. Solid State Phys. Suppl. 1 (1958).
- [12] M.H. Cohen. Phys. Rev. 96, 1278 (1954).
- [13] M.K. Teng, M. Balkanski, M. Massot. Phys. Rev. B5, 1031 (1972).
- [14] S. Sawada, M. Ida. J. Phys. Soc. J. 20, 1287 (1965).