Теплоемкость электронного сверхпроводника Pr_{1.85}Ce_{0.15}CuO₄

© М.Н. Хлопкин, Г.Х. Панова, А.А. Шиков, Н.А. Черноплеков

Российский научный центр "Курчатовский институт", 123182 Москва, Россия E-mail: khlopkin@ismain.isssph.kiae.ru

(Поступила в Редакцию 12 ноября 1998 г.)

Исследована теплоемкость керамического образца $Pr_{1.85}Ce_{0.15}CuO_4$ в области температур 2–800 К в магнитных полях до 8 Т. Определена величина скачка теплоемкости при сверхпроводящем переходе $\Delta C/T_c$ и дана оценка коэффициента электронной теплоемкости. В интервале температур 5–800 К выделен фононный вклад в теплоемкость, определена температурная зависимость характеристического дебаевского параметра Θ и вычислены средние частоты (моменты) фононного спектра. Проведено сравнение полученных параметров с данными для соединения La_{1.85}Sr_{0.15}CuO₄, имеющего сходную кристаллическую структуру, но дырочную проводимость. Величина скачка теплоемкости, а следовательно, и эффективной электронной массы в "электронном" сверхпроводнике $Pr_{1.85}Ce_{0.15}CuO_4$ в несколько раз меньше, чем в "дырочном" La_{1.85}Sr_{0.15}CuO₄.

Важное значение для выяснения особенностей свойств ВТСП имеют сравнительные исследования соединений с близкими кристаллическими структурами и концентрацией носителей, но с разным типом проводимости.

Соединения $Ln_{2-x}Ce_xCuO_4$ (Ln = Nd, Pr, Sm) имеют кристаллическую структуру, близкую к структуре $La_{2-x}Sr_{x}CuO_{4}$. Плоскости CuO, в которых сосредоточены ответственные за сверхпроводимость носители заряда, в обоих случаях одинаковы, а отличие структур заключается в том, что в первом случае атом меди окружен четырьмя атомами кислорода и имеет квадратичнопланарное окружение, а во втором случае атом меди окружен шестью атомами кислорода и находится в центре кислородного октаэдра [1]. Как измерения транспортных свойств [2], так и соображения формальной валентности указывают, что при легировании La-системы стронцием и Pr-системы церием основными носителями заряда в первом случае являются дырки, а во втором электроны.

Нами были начаты сравнительные исследования нормальных и сверхпроводящих свойств керамических образцов $\Pr_{2-x}Ce_xCuO_4$ с разным содержанием Се (0.13 < x < 0.17) и образцов $La_{2-x}Sr_xCuO_4$ [3], включающие в себя исследования термоэдс, эффекта Холла, магнитных свойств и измерений теплоемкости.

Измерения температурной зависимости теплоемкости образцов $Pr_{1.85}Ce_{0.15}CuO_4$ проводились в работах [4,5], где основное внимание было уделено поведению теплоемкости около сверхпроводящего перехода T_c и в области низких температур. Однако скачок теплоемкости при T_c не был обнаружен, по-видимому, из-за большой ширины перехода. В этих работах бюла дана оценка коэффициента Зоммерфельда, полученная из температурной зависимости теплоемкости несверхпроводящего образца в области низких температур.

С целью уточнения параметров, характеризующих электронную и колебательную подсистемы, в настоящей работе исследована теплоемкость керамического образца $Pr_{1.85}Ce_{0.15}CuO_4$ в широкой области температур (2–800 K) в магнитных полях 0, 2, 4, 6, 8 Т. Обнаружен скачок теплоемкости при T_c , изучено поведение теплоемкости в области низких температур, что позволило оценить плотность электронных состояний. Выделен фононный вклад в теплоемкость и определена характеристическая температура Дебая в широкой области температур, а также вычислены моменты фононного спектра. Проведено сравнение параметров $Pr_{1.85}Ce_{0.15}CuO_4$ с параметрами исследованной ранее системы $La_{1.85}Sr_{0.15}CuO_4$ [6].

Приготовление образцов и экспериментальная техника

Образец Pr_{1.85}Ce_{0.15}CuO₄ приготавливался методом твердофазного синтеза из смеси оксидов Pr₂O₃ (чистота 99.9%), CeO (99,9%) и CuO (99.6%), которую после тщательной перетирки отжигали 14 часов на воздухе при температуре 950°С. Полученный материал перетирали вновь и прессовали под давлением 5 kbar в таблетки диаметром 12 и толщиной 2 mm, которые отжигали на воздухе при $t = 1100^{\circ}$ C в течение 18 часов и охлаждали до комнатной температуры со скоростью 20°C в минуту. Затем для достижения сверхпроводящего состояния таблетки подвергали восстановительному отжигу в условиях динамического вакуума 10⁻³ Тогг при температуре 920°C в течение 7 часов с последующим охлаждением до комнатной температуры со скоростью 10°C в минуту.

Химический анализ, осуществленный методом плазменной флюоресцентной спектроскопии, подтвердил формульный состав образца. Согласно данным рентгенофазного анализа, образец однофазен и имеет тетрагональную структуру.

Критическая температура *T_c* сверхпроводящего перехода, определенная по АС-магнитной восприимчивости, составляла 18 К, ширина перехода — 2 К. Кривая сверхпроводящего перехода приведена на рис. 2. Исследования эффекта Мейснера в $Pr_{1.85}Ce_{0.15}CuO_4$ при гелиевой температуре (T = 4.2 K) по методике, описанной в работе [7], позволили оценить объемную долю сверхпроводящей фазы в образце в 40 %.

Теплоемкость образца в магнитных полях до 8 Т измерялась адиабатическим методом с импульсным нагревом [8]. Экспериментальная ошибка была около 2% в температурной области 1.5–4 К, 1% в области 4–10 К и 0.2–0.5% в области 10–150 К. В области температур 130–800 К измерения теплоемкости проводились методом дифференциальной калориметрии, позволяющей проводить измерения микрообразцов (10–200 mg) с точностью до 2%. Методика работы на дифференциальном сканирующем калориметре описана в работе [9].

2. Экспериментальные результаты

Результаты исследования теплоемкости $\Pr_{1.85}Ce_{0.15}CuO_4$ представлены на рис. 1–3 и в табл. 1, 2. Температурные зависимости теплоемкости при низких температурах (2–10 K) в полях 0, 2, 4, 6, 8 T приведены на рис. 1. В области температур 5–9 K в нулевом

Таблица 1. Сглаживание значения молярной теплоемкости C_P Pr_{1.85}Ce_{0.15}CuO₄ (1 моль = 409.2 g) и La_{1.85}Sr_{0.15}CuO₄ (1 моль = 397.7 g) в нулевом магнитном поле

ТК	C_P , J/(mol K)		
7,10	Pr _{1.85} Ce _{0.15} CuO ₄	$La_{1.85}Sr_{0.15}CuO_4$	
2	0.020	0.0037	
3	0.022	0.0086	
4	0.031	0.0171	
5	0.048	0.0310	
6	0.072	0.0515	
8	0.150	0.123	
10	0.285	0.261	
15	1.050	1.176	
20	2.82	3.31	
25	5.70	6.70	
30	10.02	11.05	
35	15.80	16.00	
40	21.6	20.90	
45	27.5	26.24	
50	33.4	33.0	
60	44.6	43.0	
70	54.7	53.5	
80	64.9	63.5	
90	73.4	72.5	
100	80.7	80.4	
150	106.6	106.0	
200	128.5	126.4	
250	143.0	140.0	
300	154.6	150.0	
400	171.5	163.6	
500	179.5	172.5	
600	186.0	175.3	
700	192.0	178.8	
800	194.0	182.6	

Рис. 1. Температурная зависимость теплоемкости Pr_{1.85}Ce_{0.15}CuO₄ в магнитных полях 0, 2, 4, 6, 8 T в области температур 2–10 К.

Рис. 2. Температурная зависимость теплоемкости $Pr_{1.85}Ce_{0.15}CuO_4$ вблизи сверхпроводящего перехода без поля (1) и в магнитном поле 4 T (2). Внизу: кривая сверхпроводящего перехода по АС магнитной восприимчивости.

поле температурная зависимость теплоемкости следует закону: $C = \gamma^*T + \beta T^3$, что соответствует прямой линии в координатах C/T от T^2 . При температуре ниже 3K в отсутствие магнитного поля в температурной зависимости теплоемкости $\Pr_{1.85}Ce_{0.15}CuO_4$ наблюдается аномалия, заключающаяся в отклонении от закона $C = \gamma^*T + \beta T^3$: теплоемкость растет с уменьшением температуры. С увеличением магнитного поля аномалия перемещается в область более высоких температур. Количественный анализ показал, что аномалия может быть удовлетворительно описана зависимостью, характерной для аномалии Шоттки со щелью, почти линейно зависящей от магнитного поля. Оценка величины щели в поле 8 составляет 10 K, а концентрация носителей магнитных моментов — порядка 0.02 на ячейку.

На рис. 2 приведена теплоемкость образца в окрестности сверхпроводящего перехода. В температурной зависимости теплоемкости $Pr_{1.85}Ce_{0.15}CuO_4$ в нулевом магнитном поле наблюдается скачок теплоемкости при температуре ~ 18 К. Магнитное поле 4 Т приводит к смеще-

Рис. 3. Температурная зависимость характеристической температуры Дебая Θ (*a*) и фононной теплоемкости (*b*) для $\Pr_{1.85}Ce_{0.15}CuO_4$ (*1*) и La_{1.85}Sr_{0.15}CuO₄ (*2*) в области температур 5–100 К.

нию скачка теплоемкости в область низких температур, а выше T_c , в пределах точности измерений, магнитное поле на влияет на теплоемкость. Подавление скачка теплоемкости магнитным полем, а также близость температуры скачка теплоемкости к температуре сверхпроводящего перехода, определенной по *AC*-магнитной восприимчивости, позволяет считать, что скачок теплоемкости обусловлен именно сверхпроводящим переходом в объеме образца. Амплитуда скачка $\Delta C/T_c$ исследуемого образца составляет величину 1 mJ/mol K². Поскольку сверхпроводящая фаза, по данным эффекта Мейснера, занимает лишь около 40 % объема образца, то амплитуда скачка теплоемкости с содержанием сверхпроводящей фазы 100 % будет составлять около 2 mJ/mol K².

На рис. З представлена температурная зависимость фононной теплоемкости и характеристической температуры Дебая Θ для $\Pr_{1.85}Ce_{0.15}CuO_4$ (1) и La_{1.85}Sr_{0.15}CuO₄ (2) в области 5–100 K.

3. Обсуждение

Как известно, величина скачка теплоемкости $\Delta C/T_c$ при сверхпроводящем переходе связана перенормированной с плотностью электронных состояний на уровне Ферми $N(E_F)$. Оценка коэффициента Зоммерфельда γ_n для $\Pr_{1.85}Ce_{0.15}CuO_4$ по соотношению теории БКШ $\Delta C/T_c = 1.43\gamma_n$ дает значение $\gamma_n = 1.4 \,\mathrm{mJ/mol} \,\mathrm{K}^2$ и соответственно $N(E_F) = 0.042 \,\mathrm{states/eV} \cdot \mathrm{spin}$. Сравнение наших данных для $\mathrm{Pr}_{1.85}\mathrm{Ce}_{0.15}\mathrm{CuO_4}$ с данными, полученными в [10] для $\mathrm{Nd}_{1.85}\mathrm{Ce}_{0.15}\mathrm{CuO_4}$, показывает, что эти величины близки: для $\mathrm{Nd}_{1.85}\mathrm{Ce}_{0.15}\mathrm{CuO_4} \,\Delta C/T_c = 1.7-2 \,\mathrm{mJ/mol} \,\mathrm{K}^2$, а $\gamma_n = 1.2-1.4 \,\mathrm{mJ/mol} \,\mathrm{K}^2$. Эти же параметры для системы $\mathrm{La}_{2-x}\mathrm{Sr}_x\mathrm{CuO_4}$ имеют существенно бо́льшую величину, чем для электронных сверхпроводников, и составляют $\Delta C/T_c = 11-12 \,\mathrm{mJ/mol} \,\mathrm{K}^2$, а $\gamma_n = 8-10 \,\mathrm{mJ/mol} \,\mathrm{K}^2$ [6,11]. Это показывает, что эф-фективная масса носителей в электронно-допированной системе намного меньше, чем в дырочно-допированной.

Полученные данные позволили в широком интервале температур выделить из экспериментально измеренной теплоемкости фононный вклад и определить температурную зависимость характеристического дебаевского параметра Θ (рис. 3, *a*), а также вычислить значения некоторых средних частот (моментов) фононного спектра.

При выделении фононного вклада в теплоемкость мы полагали, что фононная составляющая теплоемкости в гармоническом приближении C_{ph} связана с измеряемой в эксперименте теплоемкостью при постоянном давлении C соотношениями

$$C = C_{ph} + C_a, \tag{1}$$

$$C_a = \left\{\gamma + (A - \gamma)(C_{ph}/3nR)^2\right\}T,$$
(2)

где C_a объединяет в себе вклады в теплоемкость, имеющие линейную температурную зависимость и обусло-

Таблица 2. Характеристики сверхпроводящих переходов и теплоемкости образцов $Pr_{1.85}Ce_{0.15}CuO_4$ и La_{1.85}Sr_{0.15}CuO₄

Параметр	$Pr_{1.85}Ce_{0.15}CuO_4$	$La_{1.85}Sr_{0.15}CuO_4$
T_c, \mathbf{K}	18	39
$\Delta C/T_c$, mJ/mol K ²	2	12
γ_n , mJ/mol K ²	1.4	9
γ^* , mJ/mol K 2	3.3	0.5
β , mJ/mol K ⁴	0.244	0.230
Θ_L, K	382	390
Θ_H, \mathbf{K}	550	560
A, mJ/mol K ²	26.5	14
Ω_{\log}, K	211	209
Ω_{-2}, K	209	207
Ω_{-1}, K	259	259
Ω_1, K	393	390
Ω_2, K	426	434
Ω_*, \mathbf{K}	464	475

П р и м е ч а н и е. T_c — температура сверхпроводящего перехода. $\Delta C/T_c$ — амплитуда скачка теплоемкости и γ_n — коэффициент электронной теплоемкости сверхпроводника в нормальном состоянии, нормированные к 100% сверхпроводящей фазы. Коэффициенты γ^* и β аппроксимируют теплоемкость в области 5–9 К зависимостью $C = \gamma^*T + \beta T^3$. Θ_L и Θ_H — низкотемпературное и высокотемпературное значения температуры Дебая, A — коэффициент при линейном по температуре члене при высоких температурах. Ω_{\log} , Ω_{-2} , Ω_{-1} , Ω_1 , Ω_2 и Ω_* характеризуют в соответствии с соотношениями (6, 7, 8) средние частоты (моменты) фононного спектра, выраженные в температурных единицах. вленные ангармоническими эффектами, тепловым расширением решетки, а также электронами проводимости. При этом γ — коэффициент электронной теплоемкости сверхпроводника в нормальном состоянии при низких температурах, A — коэффициент при линейном по температуре члене при высоких температурах, R — газовая постоянная, n — число атомов в формульной единице (в нашем случае n = 7).

Интерполяционная формула (2) для C_a дает соответствующие линейные по температуре асимптотики как при низких, так и при высоких температурах и обеспечивает плавный переход между низко- и высокотемпературными асимптотиками по закону, подобному формуле Нернста–Линдемана [12]. Отметим, что вклад C_a в полную теплоемкость в области температур 20–120 К не превышает нескольких процентов от фононного вклада, и поэтому простота соотношения (2), применяемого для описания C_a , вполне оправдана.

Величины коэффициентов γ и *А* определялись последовательным приближением экспериментальных данных соответствующими асимптотическими разложениями.

В области низких температур использовалась стандартная формула: $C = \gamma T + \beta T^3$, которая позволила описать экспериментальные данные в интервале температур 5–9 К со среднеквадратичным отклонением ~ 1.5%. Величины γ , β , а также предельное низкотемпературное значение характеристической температуры Дебая Θ_L , связанное с β соотношением $\beta = 12\pi^4 nR/(5\Theta_L^3)$, приведены в табл. 2.

В области высоких температур полная теплоемкость описывалась формулой с тремя варьируемыми параметрами: Ω_2 , Ω_* и A

$$C = C_{ph} + C_a$$

= $3Rn\left\{1 - \frac{1}{12}\left(\frac{\Omega_2}{T}\right)^2 + \psi\left(\frac{\Omega_*}{T}\right)\right\} + A\left(\frac{C_{ph}}{3nR}\right)^2 T$, (3)

где

$$\psi(z) = \frac{z^2 \exp(z)}{(1 - \exp(z))^2} - \left(1 - \frac{z^2}{12}\right).$$
 (4)

Здесь для описания фононной составляющей теплоемкости реализован подход, подобный примененному в [13,14], а именно использовано асимптотическое разложение фононной теплоемкости по малому параметру $z = \Omega/T$, где Ω — характерная энергия фононов, T температура

$$C_{ph} = 3nR \left\{ 1 - \sum_{k=2}^{\infty} \frac{(k-1)B_k}{k!} \left(\frac{\Omega_k}{T}\right)^k \right\}.$$
 (5)

Здесь B_k — числа Бернулли, причем все B_k с нечетными значениями k > 2 равны нулю.

В соотношении (3) поправка второго порядка по Ω/T выписана отдельно, а функция $\psi(\Omega_*/T)$ учитывает все более высокие поправки в "Эйнштейновском" приближении, т. е. полагая $\Omega_k = \Omega_*$ при всех $k \ge 4$.

Величины Ω_k характеризуют моменты (средние частоты) фононного спектра в соответствии с соотношением

$$(\Omega_k)^k = \langle \omega^k \rangle = \int_0^\infty g(\omega) \omega^k d\omega / \int_0^\infty g(\omega) d\omega.$$
 (6)

Здесь $g(\omega)$ — энергетическая плотность фононных состояний, ω — энергия, выраженная в температурных единицах.

Отметим, что в используемом разложении (3) член с Ω_* описывает поправки высших порядков $k \ge 4$, и поэтому величина Ω_* определяется в наибольшей степени четвертым и шестым моментами спектра, т.е.

$$\omega_* \cong \Omega_4, \, \Omega_6. \tag{7}$$

Величины Ω_2 , Ω_* и *А* определялись методом наименьших квадратов аппроксимацией теплоемкости (3) в области температур 115–800 К. В этом интервале температур удалось описать экспериментальные результаты со среднеквадратичным отклонением порядка 1.3 %. Значения параметров *А* вместе с Ω_2 и Ω_* приведены в табл. 2. Здесь же приведено предельное высокотемпературное значение температуры Дебая Θ_H , связанное со вторым моментом фононного спектра соотношением: $\Omega_2 = \Omega_H (3/5)^{1/2}$.

Проведенный анализ позволил выделить из полной теплоемкости фононный вклад C_{ph} в гармоническом приближении, исключив электронную и ангармоническую составляющие, используя соотношения (1) и (2), и оценить определенные последовательным приближением значения параметров A и γ .

Некоторые моменты фононного спектра прямо выражаются через интегралы от фононной теплоемкости [15]

$$\langle\omega
angle = 2\int_{0}^{\infty} \left(1 - \frac{C_{ph}}{3nR}\right) dT,$$

 $\langle\omega^{-1}
angle = \frac{3}{\pi^2} \int_{0}^{\infty} \frac{C_{ph}}{3nR} T^{-2} dT,$
 $\langle\omega^{-2}
angle = 0.138651 \int_{0}^{\infty} \frac{C_{ph}}{3nR} T^{-3} dT,$
 $^{-1}\log\omega
angle = \frac{3}{\pi^2} \int_{0}^{\infty} \frac{C_{ph}}{3nR} \log\left(\frac{T}{0.70702}\right) T^{-2} dT$

Указанные моменты были определены численно, причем в области 10–800 К интегрирование производилось по экспериментальным точкам, а вне этой области использовалось экстраполирование теплоемкости по низкотемпературной асимптотике вида $C_{ph} = \beta T^3$ и высокотемпературной асимптотике в модели дебаевского спектра, как в [16].

 $\langle \omega$

Соответствующие этим моментам средние частоты приведены в табл. 2, причем все частоты выражены в температурных единицах. Смысл величин Ω_2 , Ω_1 , Ω_{-1} и Ω_* определен выше соотношениями (6) и (7), а смысл Ω_{log} определен соотношением

$$\log(\Omega_{\log}) = \frac{\langle \omega^{-1} \log \omega \rangle}{\langle \omega^{-1} \rangle}$$
$$= \int_{0}^{\infty} \frac{g(\omega) \log \omega}{\omega} d\omega / \int_{0}^{\infty} \frac{g(\omega)}{\omega} d\omega. \qquad (8)$$

Следует отметить, что моменты высоких порядков (Ω_2 и Ω_*) отражают характеристики фононного спектра в области более высоких энергий и определяются в основном поведением теплоемкости при высоких температурах. Моменты же Ω_{\log} , Ω_{-2} , Ω_{-1} характеризуют область низких энергий и определяются в основном теплоемкостью в области низких температур. В данных системах, например, момент Ω_{-2} определяется главным образом областью температур до 50 К и характеризует спектр в области энергий от 0 до 25 meV.

Экспериментальные данные по теплоемкости исследованного ранее образца La_{1.85}Sr_{0.15}CuO₄ [6] были обработаны по такой же процедуре, что и Pr_{1.85}Ce_{0.15}CuO₄, что позволило корректно провести сравнительный анализ их параметров. Анализ полученных численных значений средних частот (моментов) фононного спектра в Pr_{1.85}Ce_{0.15}CuO₄ и La_{1.85}Sr_{0.15}CuO₄ показывает, что величины, характеризующие низкочастотную область спектра колебаний (Ω_{log} , ω_{-2} , Ω_{-1}) в La_{1.85}Sr_{0.15}CuO₄ меньше, чем в Pr_{1.85}Ce_{0.15}CuO₄, и, таким образом, низкочастотная область фононного спектра La_{1.85}Sr_{0.15}CuO₄ "мягче". Что же касается моментов Ω_2 и Ω_* , характеризующих более высокочастотную область спектра, то здесь наоборот "мягче" спектр у Pr_{1.85}Ce_{0.15}CuO₄.

Как известно, низкотемпературная теплоемкость несет достаточную информацию для того, чтобы сделать выводы о низкочастотной области спектра колебаний. С этой целью выделенную выше фононную компоненту теплоемкости целесообразнее представить на графике в координатах C_{ph}/T^3 от T, поскольку детальный анализ, выполненный в работе [17], показал, что величина C_{ph}/T^3 является хорошим приближенным образом функции $\omega^{-2}g(\omega)$ при $\omega = 4.93$ Т. Это означает, что существенный вклад в фононную теплоемкость при температуре T вносят колебания в той области энергии E, где $E \sim 5$ kT (k — постоянная Больцмана).

Поскольку при увеличении температуры информативность анализируемой зависимости падает из-за быстрого убывания величины C_{ph}/T^3 , обсуждение температурной зависимости теплоемкости удобнее вести с помощью температурной зависимости характеристического параметра Дебая Θ , который является более тонкой характеристикой, определяющей, в частности, скорость выхода $C_{ph}(T)$ на асимптотику. Температурная зависимость $C_{ph}(T)/T^3$ для $Pr_{1.85}Ce_{0.15}CuO_4$ проходит через широкий максимум при $T \sim 30 \,\mathrm{K}$ (рис. 3, b), что соответствует наличию в фононном спектре интенсивной низкочастотной моды, расположенной при энергии $E \sim 15 \,\mathrm{meV}$. Для La_{1.85}Sr_{0.15}CuO₄ аналогичный максимум наблюдается при $T \sim 20 \,\mathrm{K}$, что соответствует положению низкочастотной моды при энергии $E \sim 10 \,\mathrm{meV}$. На рис. 3, *а* приведены зависимости характеристического параметра Θ от температуры. Смещение максимума в зависимости $C_{ph}(T)/T^3$ и соответственно минимума в зависимости $\Theta(T)$ в сторону более высоких температур в Pr_{1.85}Ce_{0.15}CuO₄ по сравнению с La_{1.85}Sr_{0.15}CuO₄ указывает на некоторое увеличение жесткости фононного спектра в области энергий порядка 10–15 meV в Pr-системе.

Проведенные измерения теплоемкости Pr_{1.85}Ce_{0.15}CuO₄ в широком интервале температур и магнитных полей позволяют сделать следующие выводы.

1) Впервые в $Pr_{1.85}Ce_{0.15}CuO_4$ при переходе в сверхпроводящее состояние обнаружен скачок теплоемкости величиной $\Delta C/T_c = 2 \text{ mJ/mol K}^2$, что позволило оценить величину коэффициента Зоммерфельда $\gamma_n = 1.4 \text{ mJ/mol K}^2$. Скачок теплоемкости при T_c и соответственно величина коэффициента Зоммерфельда в исследуемом $Pr_{1.85}Ce_{0.15}CuO_4$ в несколько раз меньше, чем в образце La_{1.85}Sr_{0.15}CuO₄. Данный факт указывает на то,что эффективная электронная масса в "электронном" сверхпроводнике в несколько раз меньше, чем в "дырочном".

2) Выделена фононная компонента теплоемкости. В рамках более корректного анализа данных по теплоемкости в области промежуточных и высоких температур вычислены средние фононные частоты (моменты) фононного спектра и определена характеристическая температура Дебая Θ в широкой области температур. В области низких энергий фононный спектр системы La_{1.85}Sr_{0.15}CuO₄ "мягче", чем системы Pr_{1.85}Ce_{0.15}CuO₄. В области же высоких энергий "мягче" спектр системы Pr_{1.85}Ce_{0.15}CuO₄.

Авторы выражают благодарность Т. Кемени за участие в экспериментах по измерению высокотемпературной теплоемкости и Н.А. Бабушкиной за предоставление образцов.

Работа поддерживается Научным советом по проблеме ВТСП и выполнена в рамках проекта № 96039 Государственной программы "Высокотемпературная сверхпроводимость".

Список литературы

- [1] Y. Tokura, H. Takagi, S.V. Uchida. Nature **337**, *6205*, 345 (1989).
- [2] M.E. Lopez-Morales, R.S. Savoy, P.M. Grant. Solid State Commun. **71**, *12*, 1079 (1989).
- [3] M.N. Khlopkin, J. Toth, G.Kh. Panova, R.O. Zaitsev, N.A. Babushkina, J.A. Arnold, S.E. Voinova. Solid State Commun. 87, 3, 213 (1993).

- [4] M. Sera, S. Shamoto, M. Sato. Solid State Commun. 72, 8, 749 (1989).
- [5] A. Iwai, A. Masaaki, H. Nakajima, K. Kumagai. Physica C185–189, Part II, 1349 (1991).
- [6] B.E. Balbashov, D.A. Shulyatev, G.Kh. Panova, M.N. Khlopkin, N.A. Chernoplekov, A.A. Shikov, A.V. Suetin. Physica C256, 3–4, 371 (1996).
- [7] В.С. Егоров, А.А. Теплов. СФХТ 1, 2, 44 (1988).
- [8] М.Н. Хлопкин, Н.А. Черноплеков, П.А. Черемных. Препринт ИАЭ, № 3549/10. М. (1982) 16 с.
- [9] Г.Х. Панова, А.А. Шиков, Т. Кемень, Б. Фогараши, Ю.В. Ефимов, Е.М. Савицкий. Препринт ИАЭ, № 3246/10, М. (1980). 12 с.
- [10] B. Buffeteau, T. Hargreaves, B. Grevin, C. Marin. Physica C294, 1–2, 55 (1998).
- [11] A. Junod, A. Bezinge, D. Cattani, J. Cors, M. Decroux, O. Fisher, P. Genoud, L. Hoffmann, J.-L. Jorda, J. Muller, E. Walkerz. Jpn. J. Appl. Phys. 26, 26–3, 1119 (1987).
- [12] Л.А. Резницкий. Калориметрия твердого тела. М. (1981). 184 с.
- [13] V.N. Naumov Phys. Rev. B49, 18, 13 247 (1994).
- [14] M.I. Katsnelson, I.I. Naumov, A.V. Trefilov, M.N. Khlopkin, K.Yu. Khromov. Phil. Mag. B75, *3*, 389 (1997).
- [15] A. Junod. Solid State Commun 33, 1, 55 (1980).
- [16] А.В. Мирмельштейн, А.Е. Карькин, В.Е. Архипов, В.И. Воронин. ФММ 58, 5 1008 (1984).
- [17] A. Junod, T. Jarlborg, J. Muller. Phys. Rev. B27, 3, 1568 (1983).