Самосогласованный расчет барьера автолокализации дырок в CuO₂-плоскости

© А.К. Шелкан, В.В. Хижняков, Э. Зигмунд*

Институт физики при Тартуском университете, EE2400 Тарту, Эстония *Institut für Physik, Technische Universität Cottbus, PBox 101344, 03013 Cottbus, Germany

E-mail: shell@fi.tartu.ee

(Поступила в Редакцию 14 сентября 1998 г.)

Изучается поведение дырки, добавленной в основное состояние антиферромагнитно упорядоченной CuO₂-плоскости с учетом Cu–O- и O–O-гибридизаций. Показано, что процесс переворота спина в CuO₂-плоскости ведет к разделению локализованного и свободного дырочных состояний энергетическим барьером $E_b \sim 0.05 \, eV$, что может проявиться в различных кинетических явлениях.

Различные исследования слабо-допированных высокотемпературных сверхпроводников (ВТСП) показывают, что основным состоянием дырки в антиферромагнитно упорядоченной CuO₂-плоскости является автолокализованное состояние [1,2]. Вклад в локализацию вносят как спин-зарядовое взаимодействие, возникающее за счет нарушения антиферромагитного (AФ) порядка [2], так и электрон-фононное взаимодействие, ведущее к локальному искажению кристаллической решетки [1]. Малые размеры дырочного полярона ведут к квантованию уровней и к конечным энергиям возбуждения (~ 0.5–1 eV) [3]. Новые исследования ВТСП с конечной концентрацией дырок явно указывают на существование в них дырочных подсистем как зонного, так и поляронного типа [4–6].

Наряду с химическим допированием дырки могут быть созданы и оптически. Широкая полоса фотоиндуцированного поглощения наблюдается вокруг $\sim 0.5 \text{ eV}$ [7,8]. Относительно большое время жизни полосы поглощения ($\sim 1 \text{ ms}$) указывает на то, что оптически созданные дырки некоторое время существуют как свободные квазичастицы. Это свидетельствует о том, что свободные и автолокализованные состояния в CuO₂-плоскостях разделены энергетическим барьером [9].

В купратных перовскитах дырки квазидвумерны. В этом случае формирование полярона за счет электронфононного взаимодействия происходит безбарьерно [10], (см. также [11], где аналогичный результат получен для анизотропных зон в трехмерном случае); в отличие от этого в спин-полярной модели барьер существует [9]. Причина этого различия заключается в нелинейной природе локального спинового возбуждения: перевернутый спин образует стабильный топологический дефект в АФ решетке. Поэтому волновой пакет большого радиуса свободной частицы в АФ решетке с одним перевернутым спином образует метастабильное состояние в отличие от пакета в локально искаженной решетке.

Вышеуказанное метастабильное состояние имеет бо́льшую энергию, чем волновой пакет того же размера в идеальной АФ решетке. Однако при малых размерах пакета его энергия меньше, если один спин в решетке перевернут. При некотором значении размера пакета L_b обе энергии совпадают. Следовательно, чтобы вычислить величину барьера между свободным и автолокализованным дырочными состояниями надо найти, при каком значении две функции от *L*: энергия волнового пакета свободной дырки и энергия пакета при одном перевернутом спине пересекаются.

1. Свободная дырка в АФ решетке

Модельный гамильтониан CuO₂-плоскости в хартрифоковском приближении модели Хаббарда имеет вид [12,13]

$$H = \sum_{\sigma} H_{MF}^{\sigma} - U \sum_{m} \langle n_{m\sigma}^{d} \rangle \langle n_{m-\sigma}^{d} \rangle, \qquad (1)$$

где

$$H_{MF}^{\sigma} = \sum_{n} (\epsilon_d + U \langle n_{m-\sigma}^d \rangle) n_{n\sigma}^d + \epsilon_p \sum_{m} n_{m\sigma}^p + T \sum_{nm} (d_{n\sigma}^{\dagger} p_{m\sigma} + H.c) + t \sum_{mm'} (p_{m\sigma}^{\dagger} p_{m'\sigma} + H.c), \quad (2)$$

 $n_{n\sigma}^{d}$ и $n_{m\sigma}^{p}$ — числа заполнения $d_{x^{2}-y^{2}}$ и $p_{x,y}$ орбиталей меди и кислорода соответственно, ϵ_{d} и ϵ_{p} — энергии этих состояний, T и t соответственно Си–О- и О–О-интегралы перескока, U — величина хаббардовской энергии корреляции на меди. Значения этих параметров можно получить из зонных расчетов: $U \approx 8 \text{ eV}, T \approx 1 \text{ eV}, t \approx 0.3 \text{ eV}, \epsilon = \epsilon_{p} - \epsilon_{d} \approx 3 \text{ eV}$ [14].

Свободная дырка в АФ решетке описывается собственными состояниями гамильтониана (1) при условии, что нижняя зона заполнена дырками. Средние значения чисел заполнения $\langle n_{\sigma}^{d} \rangle$ вычисляются сомосогласованно [15]. При вышеуказанных значениях параметров вторая дырочная зона (пустая в недопированном случае) имеет четыре минимума в $(\pm \pi/2a, \pm \pi/2a)$ точках зоны Бриллюэна, где a — постоянная решетки (см. рис. 1).

Рис. 1. Зонная структура дырки в АФ решетке, рассчитанная в приближении среднего поля.

Рис. 2. Плотность состояний дырки, рассчитанная в приближении среднего поля.

В АФ упорядоченном состоянии элементарная ячейка удваивается. Cu₂O₄ ячейки образуют простую кубическую решетку с постоянной решетки $a' = a\sqrt{2}$. Минимум дырочной зоны перемещается в $(\pm \pi/a', 0)$ и $(0, \pm \pi/a')$ точки зоны Бриллюэна. В этих точках волновая функция является линейной комбинацией узловых функций

$$|\psi\rangle_{\mathbf{m}'} = (-1)^{m_{\mathbf{x}'}} (\sin\alpha |d_2\rangle_{\mathbf{m}'} + \cos\alpha |P_1\rangle_{\mathbf{m}'}), \qquad (3)$$

$$|P_1\rangle_{\mathbf{m}'} = \frac{1}{2}(|p_1\rangle_{\mathbf{m}'} - |p_2\rangle_{\mathbf{m}'} + i|p_3\rangle_{\mathbf{m}'} - i|p_4\rangle_{\mathbf{m}'}), \quad (4)$$

 $|p_n\rangle_{\mathbf{m}'}$ — обозначает состояния четырех кислородов, окружающих медь в \mathbf{m}' элементарной ячейке; согласно

нашим расчетам, sin $\alpha \approx 0.39$. Как известно, случай t = 0 является вырожденным: минимум дырочной зоны находится на границе зоны Бриллюэна, а плотность состояний имеет логарифмическую расходимость в минимуме энергий. Учет О–О-взаимодействия убирает сингулярность и сдвигает максимум плотности состояний в конечное значение энергии (см. рис. 2).

В дальнейшем мы изучим поведение следующего дырочного пакета большого радиуса в АФ решетке:

$$|\Psi_L\rangle = \sum_{\mathbf{m}'} A_L \exp[-2(|m_{x'}| + |m_{y'}|)a'/L + i\pi m_{x'}]a^+_{\mathbf{m}'}|0\rangle,$$

 $a_{\mathbf{m}'}^+$ — оператор рождения состояния $|\psi_{\mathbf{m}'}\rangle$, $A_L = \operatorname{th}(2a'/L)$; эта форма близка к форме (~ sech(x/L)) солитонного типа пакета, имеющего минимальную энергию при данном размере $L = (\int |\psi|^4 dx)^{-1} \gg a'$. Кинетическая энергия пакета равна

$$E_{kin}(L) = \sum_{k_{x'}} \sum_{k_{y'}} E(\mathbf{k}') |\varphi(k_{x'} - \pi/a')\varphi(k_{y'})|^2, \quad (5)$$

где

$$\varphi(q) = (A_L)^{1/2} \operatorname{sh}(2a'/L) / \left(\operatorname{ch}(2a'/L) - \cos(qa') \right).$$

Для $L \gg a'$ эта энергия зависит квадратично от a'/L, несмотря на вышеуказанный максимум в плотности состояний.

Для нахождения полной энергии пакета необходимо также вычислить поправку E_{SE} к энергии пакета, возникающую за счет спин-дырочного взаимодействия. В пределе $L/a' \to \infty$ она зависит от средней дырочной концентрации $\overline{|\psi|^2} = (a'/L)^2$. Поэтому для больших L

Рис. 3. Зависимость средней энергии W дырки в CuO₂-плоскости с N_0 дополнительными дырками одинакового спина в жесткой (*a*) и самосогласованной (*b*) АФ решетках, состоящих из N элементарных ячеек, от концентрации дополнительных дырок N_0/N .

 E_{SE} приближенно равна $1/N_0$ части поправки к энергии состояния с N_0 дополнительными дырками. В приближении среднего поля эта энергия вычисляется как

$$E_{SE} = \frac{1}{N_0} \Big[E^{(s.-c.)}(N_0) - E^{(r)}(N_0) \Big], \tag{6}$$

где $E^{(r)}(N_0)$ — энергия CuO₂-плоскости с N_0 дополнительными дырками одного спина, добавленными в жесткую АФ решетку. При нахождении $E^{s.-c.}(N_0)$ значения поляризации $\langle n_{\sigma}^d \rangle$ вычисляются согласованно с учетом N_0 дополнительных дырок. Результаты вычисления $E_{kin}(L)$ и полной энергии пакета $\epsilon_L = E_{kin}(L) + E_{SE}(L)$ представлены на рис. 3. Видно, что ϵ_L растет с уменьшением размера пакета. Учитывая, что энергия спинового полярона меньше, чем энергия минимума дырочной зоны [15], можно сделать вывод, что свободное дырочное состояние отделено от автолокализованного энергетическим барьером.

2. Влияние переворота спина на меди

Чтобы найти высоту барьера, рассмотрим, как меняется энергия пакета большого радиуса при перевороте одного спина на меди. При этом надо учесть два различных вклада в изменение энергии.

1) Увеличение энергии из-за изменения магнитного взаимодействия при перевороте одного спина; оно вычисляется в приближении среднего поля методом локализованных возмущений Лифшица (подробности применения метода в трехзонной модели Хаббарда см. в [15]). Для обычных значений параметров мы получили $E^{(S)} \sim 0.15 \,\text{eV}$, что практически совпадает с экспериментальным значением этого параметра в АФ упорядоченной CuO₂-плоскости.

2) Уменьшение энергии из-за гибридизации иона меди с перевернутым спином $|d_0\rangle$ и окружающих его ионов кислорода, входящих в четыре ближайшие плакеты и образующих два ортогональных симметризованных состояния

$$ert \psi_1
angle = rac{1}{2} (ert P_1
angle_1 + ert P_1
angle_2 - ert P_1
angle_3 - ert P_1
angle_4),$$
 $ert \psi_2
angle = rac{1}{2} (ert P_2
angle_1 + ert P_2
angle_2 + i ert P_2
angle_3 + i ert P_2
angle_4);$

 $|P_1\rangle_m$ состояния определены в (4),

$$|P_{2}\rangle_{1,2} = \frac{1}{2\sqrt{3}} \left(3|p_{1,2}\rangle_{1,2} + |p_{2,1}\rangle_{1,2} \mp i(|p_{3}\rangle_{1,2} + |p_{4}\rangle_{1,2}) \right), (7)$$

$$|P_{2}\rangle_{3,4} = \frac{1}{2\sqrt{3}} (3|p_{3,4}\rangle_{3,4} + |p_{4,3}\rangle_{3,4} \pm i(|p_{1}\rangle_{3,4} + |p_{2}\rangle_{3,4})).$$
(8)

Энергетическая матрица гибридизации волнового пакета с $|d_0\rangle$ - и $|\psi_2\rangle$ -состояниями имеет вид

$$H_{h} = \begin{pmatrix} \epsilon_{L} + E^{(S)} & \frac{T}{\sqrt{2}} A_{L} \cos \alpha & 0\\ \frac{T}{\sqrt{2}} A_{L} \cos \alpha & \epsilon_{0} & T\sqrt{3}\\ 0 & T\sqrt{3} & \epsilon_{2} \end{pmatrix}, \quad (9)$$

 $\epsilon_L + E^{(S)}$ — энергия волнового пакета дырки в АФ решетке с одним перевернутым спином, $\epsilon_0 = U \langle n_{\downarrow} \rangle - \epsilon - \epsilon_{\min}$ энергия медного состояния относительно минимума дырочной зоны, $\epsilon_2 = 2T^2/U - \epsilon - (4/3)t - \epsilon_{\min}$ — энергия кислородных $|P_2\rangle_m$ -состояний относительно минимума дырочной зоны [16]. Нижайшее состояние этого гамильтониана имеет энергию

$$E_h \approx E^{(S)} + \frac{1}{2} \bigg[\epsilon_L + \varepsilon_1 \\ -\sqrt{(\epsilon_L - \varepsilon_1)^2 + 2(TA_L \cos \alpha \sin \beta)^2} \bigg], \quad (10)$$

где

$$\varepsilon_1 = \frac{1}{2} \left(\epsilon_0 + \epsilon_2 - \sqrt{(\epsilon_0 - \epsilon_2)^2 + 12T^2} \right),$$
$$\sin\beta = (\varepsilon_1 - \epsilon_2) / \sqrt{(\varepsilon_1 - \epsilon_2)^2 + 3T^2}.$$

Вычисленная таким образом энергия волнового пакета в АФ решетке с перевернутым спином E_h , как и энергия свободного волнового пакета ϵ_L , представлены на рис. 4. Соответствующие кривые пересекаются при размере пакета $L_b \approx 4a'$ (т. е. 32 CuO₂-ячеек). Энергия, при которой кривые пересекаются (отсчитанная от энергии минимума зоны), $E_b \approx 0.05$ eV, является высотой барьера.

Итак, механизм образования барьера состоит в следующем: при первоначальной локализации (стягивании) дырочного пакета большого радиуса энергия возрастает. Это происходит до тех пор, пока энергия локализации не превысит $E^{(S)}$, т. е. не станет достаточной для переворота спина. После этого дырка релаксирует в ферронное состояние.

Рис. 4. Зависимость энергии свободного дырочного состояния в АФ решетке с одним перевернутым спином (a) и ферронного состояния (b) от размера состояний *L*.

Таким образом, заключаем, что спиновой полярон дырки в АФ упорядоченной CuO_2 -плоскости в отличие от фононного полярона в двумерной решетке отделен от зонного дырочного состояния потенциальным барьером. Найденная величина барьера $\sim 0.05 \, eV$ позволяет объяснить причину значительного времени жизни фото-индуцированной полосы поглощения вблизи 0.5 eV.

Выражаем благодарность Эстонскому научному фонду за поддержку работы (грант 2274).

Список литературы

- [1] N.F. Mott. J. Phys.: Condens. Matter 5, 3487 (1993).
- [2] V. Hizhnyakov, E. Sigmund. Physica C156, 655 (1988).
- [3] S. Tajima, H. Ishii, T. Nakahashi, T. Takagi, S. Ushida, M. Seki. J. Opt. Soc. Am. B6, 475 (1989).
- [4] A. Biancconi, N.L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, T. Ito. Phys. Rev. Lett. 76, 3412 (1996).
- [5] R.K. Kremer, A.Simon, E. Sigmund, V. Hizhnyakov. Proc. of Estonian Academy of Sciences, Physics 44, 274 (1995).
- [6] Ю.В. Яблоков, Т.А. Иванова, А.Е. Усачев. ФТТ 40, 4, 622 (1998).
- [7] D. Mihailovic, C.M. Forster, K. Voss, A.J. Heeger. Phys. Rev. B42, 7989 (1990).
- [8] А.В. Баженов, А.В. Горбунов, В.Б. Тимофеев. ЖЭТФ 104, 3(9), 3193 (1993).
- [9] V. Hizhnyakov, E. Sigmund, G. Zavt. Phys. Rev. B44, 12639 (1991).
- [10] Э.И. Рашба. Экситоны / Под ред. Э.И. Рашба, М.Д. Стерджа. Гл. 13. Наука, М. (1985).
- [11] А. Шелкан, Г. Завт. Изв. АН ЭССР. Сер. физ. **39**, 358 (1990).
- [12] A.M. Oleś, J. Zaanen. Phys. Rev. B39, 9175 (1989).
- [13] G. Seibold, E. Sigmund, V. Hizhnyakov. Phys. Rev. B48, 7537 (1993).
- [14] E.B. Stechel, D.R. Jennison. Phys. Rev. B38, 4632 (1988).
- [15] A. Shelkan, G. Zavt, V. Hizhnyakov, E. Sigmund. Z. Phys. B104, 433 (1997).
- [16] V. Hizhnyakov, E. Sigmund, M. Schneider. Phys. Rev. B44, 795 (1991).