Электронная структура фуллерита С₆₀

© В.В. Соболев, Е.Л. Бусыгина

Удмуртский государственный университет, 426034 Ижевск, Россия E-mail: sobolev@uni.udm.ru

(Поступила в Редакцию 6 мая 1998 г. В окончательной редакции 29 октября 1998 г.)

Рассчитаны полные комплексы фундаментальных оптических функций монокристаллов и поликристаллических пленок фуллерита (C₆₀) на основе известных спектров отражения, а также мнимой и реальной частей диэлектрической проницаемости. Интегральые спектры диэлектрической проницаемости разложены на элементарные компоненты. Определены три основных параметра каждой компоненты (энергия максимума и полуширина, сила осциллятора). Обсуждается природа этих компонент диэлектрической проницаемости на основе известрых теоретических расчетов зон фуллерита.

1. Хорошо известны две модификации углерода: алмаз и графит. Их свойства изучены во многих работах [1]. В последние годы наблюдается настоящий поток публикаций, посвященных третьей, необычной, модификации: фуллериту [2,3]. Наиболее распространенным среди них является фуллерит С₆₀: элементарная ячейка кубической гранецентрированной решетки содержит четыре формульные единицы. Для него уже установлен ряд свойств, представляющих большой научный и практический интерес, в том числе наличие повышенной температуры сверхпроводимости в интеркалированном фуллерите ($T_k \approx 30$ K). Поэтому фундаментальное значение приобретают исследования электронной структуры С₆₀ в широкой области энергии собственного поглощения.

Общепринято, что наиболее полная информация по этой проблеме содержится в обширном комплексе оптических функций [4]. Среди них часто выделяют реальную ε_1 и мнимую ε_2 части диэлектрической проницаемости, а также коэффициент отражения *R*. Это обусловлено в первую очередь тем, что их спектры могут быть экспериментально измерены в наиболее широком интервале энергии по сравнению со многими другими функциями (коэффициент поглощения, показатель преломления и др.). Энергии максимумов спектров *R* и ε_2 обычно принимают за энергии собственных междузонных или экситонных переходов. Их конкретную природу определяют после сопоставления опыта и теории [4,5].

Однако все измеряемые спектры дают интегральную кривую как сумму всех переходов. Принципиально важно, что из-за сильного перекрытия многие из них могут структурно не наблюдаться [1,4,6]. Поэтому одна из фундаментальных задач любой спектроскопии состоит в разделении измеряемой спектральной кривой на элементарные компоненты и определении их основных параметров: энергии максимума E_i и полуширины H_i , вероятности перехода f_i . Нами освоен однозначный метод решения этой задачи с помощью диаграмм Арганда без подгоночных параметров. Однако при этом необходим одновременный учет спектров ε_2 и ε_1 .

2. Нами рассчитаны полные комплексы фундаментальных оптических функций, разложены интегральные спектры ε_2 , ε_1 на компоненты и определены параметры компонент (E_i , H_i , f_i) монокристаллов и поликристаллических пленок C₆₀. Расчеты выполнены по известным методикам [1,4,6] на основе экспериментальных спектров R в области 1–35 eV [7]; ε_2 , ε_1 в области 1.5–5 eV [8] для монокристаллов; ε_2 , ε_1 в областях 1.5–5 eV [9]; 1.5–9.5 eV [10]; 1.5–7 eV [11] для пленок. В работе представлены только результаты разложений интегральных спектров ε_2 и ε_1 на компоненты.

Всего установлены двадцать две компоненты спектра ε_2 в области 2–10 eV вместо четырех максимумов интегральной кривой. На рисунке показаны значения сил осцилляторов f_i этих компонент вертикальными отрезками; цифрами обозначены их номера по порядку. Несмотря на использование интегральных кривых пяти различных работ, положения максимумов компонент определены с высокой точностью (±0.01 и ±(0.01–0.04) eV для самых интенсивных и остальных полос).

Известны две попытки воспроизведения (но не разложения!) интегральных кривых ε_2 пленок C₆₀ при помощи шестнадцати и десяти лоренцевских осцилляторов с использованием тридцати восьми [10] и сорока [12] подгоночных параметров. Применение гигантского количества подгоночных параметров лишний раз подчеркивает сомнительность таких операций воспроизведения интегральной кривой произвольным набором компонент.

Анализ особенностей разложения спектров ε_2 и ε_1 фуллерита беспараметрическим методом диаграмм Арганда и воспроизведения спектра ε_2 с помощью громадного количества подгоночных параметров убедительно свидетельствует в пользу первого метода. Конечно, этот беспараметрический метод разделения спектров ε_2 и ε_1 на элементарные компоненты еще недостаточно совершенен и является "нулевым" приближением более совершенного решения этой задачи. Следует подчеркнуть, что в общепринятом приближении представления интегральной диэлектрической проницаемости как суммы вкладов отдельных лоренцевских осцилляторов метод диаграмм

Схема зависимости сил осцилляторов f_i 22 компонент ε_2 фуллерита C₆₀ от их энергии.

Арганда позволяет однозначно разложить интегральные спектры ε_2 , ε_1 на минимальный набор полос. В каждой полосе суммированы переходы с близкими энергиями, но не обязательно близкой природы. Поэтому на основе теоретических моделей о возможной тонкой структуре полос они могут быть дополнительно разложены на несколько компонент каждая.

3. Электронная структура и оптические спектры молекулярного кристалла С₆₀ рассчитаны во многих работах [3]. Спектры поглощения сравнительно мало меняются в ряду свободная молекула-С₆₀ в растворекристалл. Поэтому заранее принимается, что, по крайней мере, интенсивные полосы обусловлены экситонами малого радиуса типа френкелевских, обычно характерными для молекулярных кристаллов. Электронная структура фуллерита С₆₀ упрощенно рассчитана в приближении молекулярных термов h_u , h_g , g_u , g_g , t_u и зон; среди всех зон выделяют три верхние валентные V1, V2, V3 и три нижние зоны проводимости C_1 , C_2 , C_3 [3]. На основе этих расчетов можно предположить общую модель природы установленных нами 22 компонент ε_2 фуллерита С₆₀. В модели зон они обусловлены переходами $h_u
ightarrow t_{1g}(V_1
ightarrow C_2)$ для № 1-3; $h_g, g_g
ightarrow t_{1u}(V_2
ightarrow C_1)$ для № 4–8; $h_u \rightarrow h_g(V_1 \rightarrow C_3)$ для № 9–12; $h_g, g_g
ightarrow t_{2u}(V_2
ightarrow C_2)$ для № 13–15; $g_u, t_{2u}
ightarrow h_g(V_3
ightarrow C_3)$ для № 16–19; $V_1 \rightarrow C_4, C_5$ и $V_2 \rightarrow C_3, C_4$ для № 20–22. В простейшем приближении все занятые (свободные) термы пятикратно (трехкратно) вырождены. Благодаря различным возмущениям в реальных кристаллах это вырождение снимается. Термы расщепляются, а зоны имеют весьма сложное тонкое строение каждая. Это дает общее удовлетворительное объяснение достаточно сложной структуры установленного нами спектра компонент переходов фуллерита. Аналочиную общую схему природы компонент спектра ε_2 можно предложить и в модели экситонов малого радиуса. Фуллерит С₆₀ является молекулярным кристаллом с весьма плоскими зонами. Поэтому вероятно, что установленные нами

компоненты ε_2 обусловлены экситонами малого радиуса. Можно надеяться, что использование установленной нами новой информации о наиболее полном составе компонент переходов и их параметрах (E_i , H_i , f_i) в широкой области энергии фундаментального поглощения (1.5–35 eV) поможет разработать существенно более точные и полные модели электронной структуры фуллерита и родственных ему материалов.

Авторы благодарны за оттиски работ W.E. Pickett, Y. Iwasa, M.K. Kelly, G. Guizzetti и H. Kataura.

Работа выполнена при поддержке Центра фундаментальных исследований (Санкт-Петербургский университет).

Список литературы

- В.В. Соболев. Собственные энергетические уровни твердых тел группы A⁴. Штиинца, Кишинев (1978). 207 с.
- [2] А.В. Елецкий, Б.М. Смирнов. УФН 165, 9, 977 (1995).
- [3] W.E. Pickett. Solid State Phys. 48, 225 (1994).
- [4] В.В. Соболев, В.В. Немошкаленко. Методы вычислительной физики твердого тела. Электронная структура полупроводников. Наук. думка. Киев (1988). 423 с.
- [5] В.В. Соболев, В.И. Донецких. ЖЭТФ **59**, *1*, 3 (1970).
- [6] В.В. Соболев, В.Вал. Соболев. ФТТ 36, 9, 2560 (1994).
- [7] Y. Iwasa, T. Yasuda, Y. Naito, T. Koda. Activity Report of Synchrotron Radiation Laboratory. The Institute for Solid State Physics, Tokyo (1992).
- [8] P. Milani, M. Manfredini, G. Guizzetti, F. Marabelli, M. Patrini. Sol. State Commun. 90, 10, 639 (1994).
- [9] M. Patrini, F. Marabelli, G. Guizzetti, P. Milani, M. Manfredini. Proc. Symp. Recent Adv. Chem. Phys Fullerenes, Proc. 94–24, 632 (1994).
- [10] M.K. Kelly, P. Etchegoin, D. Fuchs, W. Kratschmer, K. Fostiropoulos. Phys. Rev. B46, 8, 4963 (1992).
- [11] H. Kataura, J. Endo, J. Achiba, K. Kikuchi, T. Hanyu, Sh. Yamaguchi. Jpn. J. Appl. Phys. B34, 6, L1467 (1995).
- [12] J. Hora, P. Panek, K. Navratil, B. Handlirova, J. Humlicek, H. Sitter, D. Stifter. Phys. Rev. B54, 7, 5106 (1996).