Термоионизация примесных центров в кристаллах Bi₁₂SiO₂₀ и Bi₁₂GeO₂₀, легированных Fe

© Т.В. Панченко

Днепропетровский государственный университет, 320625 Днепропетровск, Украина

E-mail: elf@ff.dsi.dp.ua

(Поступила в окончательном виде 12 ноября 1998 г.)

В диапазоне энергий фотона 1.36–3.46 eV в области температур 85–750 К исследованы спектральные и температурные зависимости оптического поглощения и токи термостимулированной деполяризации кристаллов Bi₁₂SiO₂₀ и Bi₁₂GeO₂₀, легированных Fe. Результаты свидетельствуют о термоиндуцированном перераспределении электронов между донорными и акцепторными уровнями, а также о процессах ассоциации–диссоциации дефектов и обсуждаются с привлечением модели конфигурационных координат.

Примесь железа в фоторефрактивных кристаллах со структурой силленита Ві12МО20 (ВМО, где M = Si, Ge, Ti) изучалась в [1-14]. ЭПР-исследования показали, что ионы Fe³⁺ присутствуют в номинально чистых кристаллах ВМО [1,2], они высокочувствительны к температуре и освещению и могут играть важную роль в фоторефрактивном эффекте [1,2,4-6]. Концентрация ионов Fe³⁺ убывает под действием сине-зеленой подсветки и восстанавливается светом из области 2.2–1.3 eV (частично) или нагревом до $T \approx 300 \,\mathrm{K}$ (полностью). Поскольку другие ЭПР-спектры при этом не появляются, то существуют две возможности (Fe⁴⁺ и Fe²⁺) изменения зарядового состояния Fe³⁺. Первая рассмотрена в [4,5]. Однако анализ спектров оптического поглощения кристаллов ВМО: Fe и Bi₂₅FeO₄₀ [3,13] свидетельствует в пользу переходов ${
m Fe}^{3+}+h
u
ightarrow {
m Fe}^{2+},$ предложенных в [6]. Термо- и фотоиндуцированные изменения ЭПР-сигнала предоставили возможность использовать ионы Fe³⁺ в качестве парамагнитного зонда для определения энергетического положения некоторых уровней запрещенной зоны ВМО [4-6,9,10].

Детали структуры спектров оптического поглощения железосодержащих кристаллов ВМО можно объяснить исходя из схем оптических переходов в модели кристаллического поля лигандов либо рассчитанных по методу ЛКАО-МО [3]. Результаты исследования магнитного циркулярного дихроизма и оптическое детектирование парамагнитного резонанса указывают на предпочтительность модели поля лигандов для ионов Fe, замещающих М в кислородных тетраэдрах [11,14].

Идентификация зарядового состояния и локализации Fe не решает, однако, многих вопросов, связанных с присутствием этих ионов в силленитах. В частности, неясна природа оптических переходов, формирующих широкий спектр (видимая и ближняя ИК-области) фотоиндуцированного поглощения, поскольку вклад внутрицентровых переходов ионов Fe^{3+} и Fe^{2+} незначителен. Легирование Fe приводит к изменению типа (с *n*на *p*-) темновой и фотопроводимости силленитов [8], это свидетельствует в пользу предположения [5] об одновременном участии доноров и акцепторов в процессах оптической и термической перезарядок этих ионов и других центров, однако конкретные механизмы не рассматривались. Интерес к этим процессам усилился в последнее время [9,10,12]; показано, например, что конкуренция фотовозбужденных электронов и дырок определяет температурную зависимость диффракционной эффективности в кристаллах ВМО: Fe [12].

Данная работа посвящена дальнейшему исследованию перезарядки примесных центров в кристаллах ВМО: Fe методами оптической и токовой термоактивационной спектроскопии.

1. Эксперимент

Исследовались кристаллы $Bi_{12}SiO_{20}$ (BSO) и $Bi_{12}GeO_{20}$ (BGO), легированные ионами нечетного изотопа ⁵⁷Fe. Кристаллы были выращены по методу Чохральского вдоль направления [001] и содержали (по данным эмиссионного спектрального анализа) ≤ 0.01 (BSO:Fe) и ~0.015 (BGO:Fe) масс.% Fe.

Для оптических измерений образцы приготавливались в виде полированных пластин площадью $8 \times 8 \text{ mm}^2$ и толщиной d = (0.1-5) mm, вырезанных в плоскости (001). Они помещались в кристаллодержатель азотного криостата и быстро ($\sim 20 \text{ min}$) охлаждались до $\sim 85 \text{ K}$ перед началом измерений.

Спектры оптического пропускания t(E) измерялись в диапазоне энергий фотона E = (1.36-3.4) eV на спектрофотометре Specord M40. Температура изменялась в области T = (85-700) K со скоростью $b_1 = 0.02$ Ks⁻¹. Спектры t(E) сканировались (в течение 60 s каждый) через (3-5) K в области $T_1 = (85-300)$ K и через 10 K в области $T_2 = (300-700)$ K.

Спектры поглощения $\alpha(E)$ рассчитывались из соотношения [15]

$$t = \left\{ (1-R)^2 \times \alpha \lambda (4\pi n)^{-2} \right\} / \left\{ \exp(\alpha d) - R^2 \exp(-2\alpha d) \right\}, (1)$$

где n(E) — коэффициент перломления, λ — длина волны, R(E) — коэффициент отражения. Зависимости

$$n^{2} = 1 + A\lambda_{0}^{2}\lambda^{2} / (\lambda^{2} - \lambda_{0}^{2}) + B\lambda_{1}^{2}\lambda^{2} / (\lambda^{2} - \lambda_{1}^{2})$$
(2)

со значениями свободных параметров: $A = 92.22 \,\mu m^{-2}$, $B = 0.534 \,\mu m^{-2}$, $\lambda_0 = 0.22 \,\mu m$, $\lambda_1 = 0.37 \,\mu m$, что соответствует краю фундаментального поглощения кристаллов BSO. Рассчитанные зависимости n(E) коррелируют с экспериментальными данными [17].

Для измерений термостимулированных токов образцы приготавливались в виде полированных брусков размерами $0.8 \times 3 \times 5$ mm. Рt-электроны наносились катодным напылением в вакууме на поверхности 3×5 mm, вырезанные в плоскости (001). Образцы помещались в кристаллодержатель с сапфировой изоляцией.

Измерялись токи термостимулированной деполяризации (ТСД) для предварительно созданных термоэлектретных состояний, которые формировались в поле напряженностью $E_p = (10^2 - 10^4) \, \text{Vcm}^{-1}$ при температуре $T_p = (300 - 450) \, \text{K}$. Время поляризации (30 min) во всех случаях было одинаковым. Для измерений использовалась управляемая микро-ЭВМ установка, описанная в [18]. Токи ТСД измерялись в диапазоне $T = (300 - 850) \, \text{K}$ в режиме нагрева со скоростью $b_2 = 0.16 \, \text{Ks}^{-1}$.

2. Результаты

2.1. Спектры поглощения. Полученные спектры $\alpha(E, T)$ (рис. 1) для кристаллов BSO: Fe и BGO: Fe качественно аналогичны. Во всем исследованном диапазоне температур наблюдается "гашение" интенсивного "плеча" поглощения, характерного для нелегированных кристаллов ВМО в области $E = (2.2-3) \, \text{eV} [19,20].$ Структурные особенности спектров в виде слабых полос (показаны стрелками на рис. 1) обусловлены спинзапрещенными *d*-*d*-электронными переходами в ионах Fe^{3+} (электронная конфигурация $3d^5$) из основного состояния (⁶ A_1) в возбужденные (⁴ $T_1(t_2^2e_2^2)$, ⁴ $T_2(t_2^2e^2)$, ⁴ A_1 , ⁴ $E(t_2^3 E, e^2 H_2)$, ⁴ $T_2(t_2^3 e^2)$, ⁴E(4D)) [13]. Следует отметить, что переходы имеют аномально большую силу осциллятора [13], что может быть обусловлено эффектом "заимствования" интенсивности от полосы переноса заряда типа лиганд-металл $\mathrm{O}^{2-} \to \mathrm{Fe}^{3+}$ [21].

Зависимости $\alpha(E, T)$ свидетельствуют о немонотонном изменении с ростом температуры примесного поглощения в области E = (1.36-2.96) eV. Вблизи края фундаментального поглощения в диапазоне значений E, нижняя граница которого уменьшается с ростом температуры (от $E \approx 3.16$ eV при $T \leq 250$ K до $E \approx 2.7$ eV при T = 700 K), выполняется правило Урбаха $\alpha(E) = \alpha_0 \exp[\chi(E-E_0)]$. При этом зависимости $\ln \alpha = f(E)$ имеют излом, их линейные фрагменты сходятся в точках с координатами: $\alpha_{01} = 4.23 \cdot 10^4$ cm⁻¹,

Рис. 1. Спектральные зависимости оптического поглощения $\ln \alpha(E)$ кристаллов BSO: Fe при T = 86 (1), 133 (2), 183 (3), 210 (4), 248 (5), 263 (6) и 317 К (7); на вставке — полосы краевого примесного поглощения кристаллов BSO: Fe (1) и нелегированного кристалла BSO (2).

 $E_{01} = 3.36 \,\mathrm{eV}$ (BSO:Fe), $\alpha_{02} = 5.1 \cdot 10^4 \,\mathrm{cm}^{-1}$, $E_{02} = 3.38 \,\mathrm{eV}$ (BGO:Fe) и могут быть представлены в виде

$$\ln \alpha(E) = \ln \alpha_{0i} + \sigma(T)(E - E_{0i})/kT, \qquad (3)$$

где σ — параметр, характеризующий наклон края поглощения, k — постоянная Больцмана, i = 1, 2. Температурная зависимость $\sigma(T) = kT\Delta(\ln \alpha)/\Delta E$ хорошо аппроксимируется выражением для края поглощения, формирующегося с участием электрон-фононного взаимодействия [22]

$$\sigma(T) = \sigma_{0i}(2kT/h\nu_{0i})\operatorname{th}(h\nu_{0i}/2kT).$$
(4)

Энергия эффективного фонона $h\nu_1 = 16.6 \text{ meV}$ (BSO:Fe) и $h\nu_1 = 16.8 \text{ meV}$ (BGO:Fe) близка к энергии оптических фононов с частотой $\omega = 134.8 \text{ cm}^{-1}$ наблюдавшихся в спектрах комбинационного рассеяния нелегированных кристаллов BMO [23]. Значения $\sigma_{01} = 1.05$ (BSO:Fe) и $\sigma_{02} = 0.95$ (BGO:Fe) значительно выше найденных в [24,25] для нелегированных кристаллов BSO с дефектами нестехиометрии и легированных ионами A1 и Ga. Это указывает на уменьшение константы электрон-фононного взаимодействия $g = (2/3)\sigma_0^{-1}$.

Температурные зависимости изоабсорбционной энергии $E_g^*(T)$, отражающие изменение с температурой ширины запрещенной зоны, описываются известным выражением для полупроводников

$$E_{g}^{*}(T) = E_{gi}^{*}(0) - CT^{2}/(\theta - T),$$
(5)

где эмпирические константы $E_{g1}^*(0) = 3.35 \text{ eV}$ (BSO:Fe), $E_{g2}^*(0) = 3.38 \text{ eV}$ (BGO:Fe), $C = 3.7 \cdot 10^{-5} \text{ eV K}^{-1}$ и $\theta = 280 \text{ K}$ (при $\alpha = 1090 \text{ cm}^{-1}$) также отличаются от найденных в [24,25]. Аномалии $\sigma(T)$ и $E_g^*(T)$ в температурных диапазонах $\Delta T = 190-240$, 270–300 и 400–430 K, наблюдавшиеся в кристаллах BSO [24], для кристаллов BSO:Fe и BGO:Fe слабо выражены (рис. 2).

Излом зависимостей $\ln \alpha = f(E)$ указывает на наличие прикраевой полосы поглощения. Мы выделили ее путем экстраполяции верхнего участка края поглощения в область меньших значений α и вычета полученных значений из общего спектра. Полоса смещена к краю поглощения по сравнению с аналогичной полосой в нелегированных кристаллах BSO (вставка на рис. 1). Она определенно связана с ионами Fe и/или дефектами зарядовой компенсации, так как ее интенсивность растет с ростом концентрации этой примеси, а спектральное положение ($E_{\text{max}} = 3.29 \,\text{eV}$) и дуплетная структура полосы соответствуют d-d-электронным переходам в ионах Fe^{3+} с координационным числом 4 [13]. Температурная зависимость $\alpha(T)$ в области длинноволнового склона этой полосы характеризуется небольшим максимумом (при $T = 200 - 300 \,\text{K}$) на фоне экспоненциального роста поглощения.

Вдали от края поглощения зависимости $\alpha(T)$ можно разбить на две группы. Одна характеризует поглощение в *А*-области энергий фотона ($E_A = 1.36-2 \text{ eV}$), другая — в *В*-области "плеча" поглощения нелегированных кристаллов ВМО ($E_B = 2.2-3 \text{ eV}$).

В кристаллах BSO: Fe для этих областей наблюдается некоторая корреляция изменения поглощения. В интервале $\Delta T_1 = 86-180$ K монотонное уменьшение поглощения в *A*-области сопровождается его ростом в *B*-области, для $\Delta T_2 = 180-280$ K зависимости $\alpha(T)$

Рис. 2. Экспериментальные (1, 3 -точки) и аппроксимирующие (2, 4 -линии) температурные зависимости параметра σ и изоабсорбционной энергии E_g^* (для $\alpha = 1090$ cm⁻¹) кристаллов BSO: Fe.

Рис. 3. Температурные зависимости оптического поглощения фотонов с энергией *E* в кристаллах BSO: Fe (*1–5*) и BGO: Fe (*6*) для длинноволновой (*a*) и коротковолновой (*b*) областей спектра, смещенные относительно друг друга с помощью множителя k_0 : a - E = 1.425 (*1*, *6*, $k_0 = 1$), 1.518 (*2*, $k_0 = 0.9$), 1.735 (*3*, $k_0 = 1.5$), 1.86 (*4*, $k_0 = 1.84$) и 2.08 eV (*5*, $k_0 = 2.35$); b - E = 2.788 (*1*, $k_0 = 2.11$), 3.06 (*2*, $k_0 = 1.2$), 3.098 (*3*, $k_0 = 0.58$), 3.221 (*4*, *6*, $k_0 = 0.26$), 3.252 (*5*, $k_0 = 0.23$).

проходят через минимум в обеих областях. Затем для А-области наблюдаем плато ($\Delta T_3 = 290-420$ K), ступенчатый спад ($\Delta T_4 = 420-490$ K) и слабо выраженные максимумы α ($\Delta T_5 = 500-700$ K). Эти изменения сопровождаются ступенями на фоне экспоненциального роста поглощения в *B*-области. В кристаллах BGO:Fe эти особенности $\alpha(T)$ выражены слабо (рис. 3). Следует отметить, что проходящие через минимум зависимости фотоиндуцированного поглощения от температуры в области (220–280) К наблюдались в кристаллах BGO:Mo и BGO:Ce [26].

Рис. 4. Спектры термоиндуцированного оптического поглощения $\Delta \alpha / \alpha_0 = [\alpha(E, T_i) - \alpha(E, T_0)] / \alpha(E, T_0)$ кристаллов BSO: Fe, где $T_0 = 86$ K; $a - T_i = 105$ (1), 115 (2), 135 (3), 155 (4) и 175 K (5); $b - T_i = 205$ (1), 225 (2), 245 (3), 265 (4) и 290 K (5); на вставке — спектр $\Delta \alpha / \alpha_0(E)$ кристаллов BSO: Fe для $T_i = 430$ K, $T_0 = 300$ K.

Термоиндуцированные изменения зависимостей $\alpha(E,T)$ кристаллов BSO: Fe характеризуют спектры $\Delta \alpha / \alpha_0 = [\alpha(E,T_i) - \alpha(E,T_0)] / \alpha(E,T_0)$, где $T_0 = 86$ K, $T_i > T_0$ (рис. 4). Интересно, что на первом этапе нагрева (ΔT_1) эти спектры в *B*-области полностью аналогичны фотоиндуцированным (светом с $E \cong 2.9$ eV) спектрам поглощения [13]. В обоих случаях наблюдаются характернные "провалы", спектральное положение которых ($E_1 = 2.7 - 2.8$ eV, $E_2 = 3 - 3.3$ eV) соответствует d-d-переходам в ионах Fe³⁺, а факт их появления указывает на уменьшение концентрации ионов Fe³⁺.

Уменьшению поглощения в интервале ΔT_2 соответствует "просветление" в широкой спектральной области (до $E \leq 3.1 \,\mathrm{eV}$). При этом глубина провалов, связанных с ионами Fe³⁺, уменьшается, свидетельствуя о росте концентрации этих ионов, кроме того, появляется и исчезает полоса поглощения с $E \approx 2.9 \,\mathrm{eV}$, обусловленная ионами Fe²⁺ [13] (рис. 5). Последующий рост поглощения в *B*-области характеризуется постепенной трансформацией спектра $\Delta \alpha(E, T)/\alpha_0$ таким образом, что полоса дополнительного термоиндуцированного по-

глощения смещается к краю поглощения, а для полосы просветления в *А*-области наблюдается длинноволновое смещение. И наконец, за ступеньчатый спад поглощения в интервале ΔT_4 отвечает узкая полоса просветления $\Delta E = 1.46 - 2.36 \text{ eV}$ (вставка на рис. 4).

2.2. Токи ТСД. Температурные спектры токов ТСД I(T) кристаллов BSO: Fe и BGO: Fe имеют вид структурированных куполообразных кривых (рис. 5). При невысокой температуре поляризации (*T_p* < 400 K) в кристаллах BSO: Fe на низкотемпературных склонах этих кривых прописывается характерная группа узких пиков, интенсивности которых растут, а сами они смещаются в сторону более высоких температур с ростом напряженности поляризующего поля. Эта группа пиков исчезает, если $T_p \ge 400$ К. Исчезновению пиков из спектра токов ТСД соответствует отжиг оптически активных дефектов в интервале температур ΔT_4 , ответственных за полосу просветления $\Delta E = 1.46 - 2.36$ eV в спектрах поглощения. Смещение пиков было использовано для оценки энергии термической активации электрически активных дефектов ${}^{T}E_{a}$ из соотношения, справедливого для высоких температур [27]

$${}^{T}E_{a} = \left\{ kT_{m1}T_{m2}/(T_{m2} - T_{m1}) \right\} \\ \times \left\{ \ln \left[(I_{m2}/I_{m1})(T_{m1}/T_{m2})^{2} \right] \right\},$$
(6)

где T_{m1} , T_{m2} , I_{m1} , I_{m2} — температурные положения и интенсивности пиков соответственно. Полученные значения ${}^{T}E_{a} = 0.33$, 0.4, 0.48, 0.52 и 0.56 eV коррелируют с аналогичными, но найденными в [7,8] с использованием других экспериментальных методов. Рост поляризующего поля при $T_{p} \ge 400$ K обусловливает также увеличение интенсивности более высокотемпературных пиков, их температурное положение в спектре I(T) не изменяется (рис. 5).

Рис. 5. Спектры токов ТСД I(T) кристаллов BSO: Fe для различных условий предварительной поляризации: $T_p = 340 \ (1, 3, 3'), 450 \text{ K} \ (2, 4, 4'), E_p = 4.8 \cdot 10^2 \ (1, 2), 7 \cdot 10^3 \text{ V cm}^{-1} \ (3, 3', 4, 4')$ и дифференциальный спектр $d\alpha/dT(T)$ кристаллов BSO: Fe (5).

3. Обсуждение

Результаты можно объяснить, рассматривая кристаллы BSO: Fe и BGO: Fe как компенсированные полупроводники р-типа с высокой плотностью акцепторных состояний вблизи потолка валентной зоны и "шлейфом" акцепторных уровней, заходящим глубоко в запрещенную зону. Быстрое охлаждение переводит кристаллы в метастабильное состояние, когда электроны "заморожены" на донорных уровнях с ${}^{O}E_{dc} \leqslant 2.2\,\mathrm{eV}$. По мере нагревания замороженные электроны "перекачиваются" на акцепторные уровни нижней половины запрещенной зоны. Особенностью данной ситуации является большая разница между энергиями термической активации $(^{T}E_{dc} \leqslant 30kT_{1}^{*} \approx 0.5 \,\mathrm{eV},$ где $T_{1}^{*} = 180 \,\mathrm{K}$ — верхняя граница интервала ΔT_1) и оптической активации $(1.36 \text{ eV} \leqslant {}^{O}E_{dc} \leqslant 2 \text{ eV})$ для примесных уровней, ответственных за поглощение в А-области. Эту разницу можно объяснить в рамках модели конфигурационных координат многофононным механизмом электронных переходов с глубоких уровней [28] для метастабильного и равновесного состояний кристаллов BSO: Fe (рис. 6). В метастабильном состоянии энергия оптической активации для электронов на донорном уровне (${}^{O^*}E_{dc}$) выше, чем в основном (${}^{O}Fe_{dc}$), это объясняет длинноволновое смещение полосы просветления в А-области. Переход в основное состояние является термоактивируемым процессом с малой энергией активации $^{T}E_{s} = 0.015 \,\mathrm{eV}$ (определена по наклону зависимости $\alpha(E)$ в координатах Аррениуса в интервале ΔT_1). С ростом температуры электроны переходят с донорных уровней (основного состояния) на акцепторные, энергия оптической ионизации (${}^{O}E_{ac}$) которых возрастает по мере заполнения (${}^{O}E_{ac1} > {}^{O}E_{ac2}$). Этим объясняется коротковолновой сдвиг полосы термоиндуцированного поглощения в В-области.

Рис. 6. Зависимость общей энергии E кристалла BSO: Fe от конфигурационной координаты Q с основными энергетическими характеристиками: кривые, обозначенные BC и BV, соответствуют общей энергии системы в случае, когда уровни пусты, а электроны находятся в зоне проводимости или валентной, кривые DL, DL^* соответствуют основному и метастабильному состояниям с электронами на донорных уровнях, кривые AL_1 , AL_2 — электронам на акцепторных уровнях.

Прохождение температурных зависимостей поглощения через минимум в обеих *А*- и *В*-областях спектра может быть обусловлено процессами ассоциации– диссоциации примесных центров. В кристаллах ВМО есть все предпосылки для таких процессов: особенности кристаллохимической структуры допускают сосуществование нескольких типов элементарных точечных дефектов, между которыми могут возникать взаимодействия, приводящие к образованию комплексных дефектов. В частности, термодеполяризационный анализ механизмов поляризации в нелегированных кристаллах BSO свидетельствует о существенном вкладе дипольной поляризации [29]. Рассмотрим образование комплексов-димеров из квазидиполей типа примесь-вакансия [27]

$$dN_{\rm dip}/dt = -\gamma N_{\rm dip}^2 \exp(-E_{\rm ass}/kT) + C(T)N_{\rm com}, \qquad (7)$$

где $N_{\rm dip}$, $N_{\rm com}$ — концентрации диполей и комплексов соответственно, γ — частотный фактор, $E_{\rm ass}$ — энергия термической ассоциации комплексов, C(T) — вероятность диссоциации. Решение этого уравнения дает проходящую через минимум зависимость $N_{\rm dip}(T)$ с экспоненциальными низко- и высокотемпературными начальными участками склонов, подобную наблюдавшейся в эксперименте зависимости $\alpha(T)$. Полагая, что величина поглощения определяется концентрацией примесных состояний, обусловленных квазидиполями и их ассоциатами, т.е.

$$\alpha(T) = \sigma(E) N_{\rm dip}(T), \qquad (8)$$

где $\sigma(E)$ — сечение поглощения фотона, получаем $E_{\rm ass} = (0.04 - 0.06) \, {\rm eV}$ и $E_{\rm dis} = (0.07 - 0.1) \, {\rm eV}$ соответственно для низко- и высокотемпературных склонов. Разброс значений $E_{\rm ass}$ и $E_{\rm dis}$ дает зависимости $\alpha(T)$ для энергии фотонов $E = (1.4 - 2) \, {\rm eV}$.

Корреляцию ступенчатого спада поглощения для *A*-области спектра со ступенчатым его увеличением для *B*-области в интервале температур ΔT_4 можно объяснить, полагая, что поглощение в *A*-области определяется концентрацией нейтральных доноров N_d , а в *B*-области — концентрацией ионизированных акцепторов N_a^i $\alpha_A(T) = \sigma_A(E) N_d(T) + \alpha_{01}$

И

$$\alpha_B(T) = \sigma_B(E) N_a^i(T) + \alpha_{02}, \qquad (9)$$

где $\sigma_A(E)$, $\sigma_B(E)$ — сечения поглощения фотонов, α_{01} , α_{02} — константы.

Для температурной зависимости N_d было получено выражение [30]

$$N_{d}(T) = N_{d}^{0} \Big\{ 1 - \beta \exp\left[\tau_{0}^{*}kT^{2}/({}^{T}E_{dc} + 1.85kT)\right] \\ \times \exp\left(-{}^{T}E_{dc}/kT\right) \Big\},$$
(10)

где N_d^0 — исходная концентрация нейтральных доноров (при T = 350 K), β — степень компенсации донорных уровней акцепторными, $\tau_0^* = \text{const}$, ${}^TE_{dc}$ — эффективная энергия термической активации донорных уровней, а $N_d^i(T) = N_d^0 - N_d(T)$ — соотношение между концентра-

циями нейтральных и ионизированных доноров. Согласующийся с экспериментом спад поглощения получаем, например, для энергии фотона E = 1.735 eV (кривая 3 на рис. 3, *a*) при $N_d^0 = 1.5 \cdot 10^{18} \text{ cm}^{-3}$, $\tau_0^* = 2 \cdot 10^5 \text{ K}^{-1}$, $\beta = 0.7$, ${}^{T}E_{dc} = 0.65 \text{ eV}$, $\sigma_A = 1.5 \cdot 10^{-18} \text{ cm}^2$, $\alpha_{01} = 0.5 \text{ cm}^{-1}$.

Полагаем далее, что степень ионизации акцепторов растет за счет "перекачки" электронов с донорных уровней на акцепторные через зону проводимости (при условии, что перезахват на донорные центры несуществен). Кинетику этих процессов опишем уравнениями

$$dN_d/dt = -N_d\omega_d \exp(-{}^tE_{dc}/kT),$$

$$dn/dt = N_d\omega_d \exp(-{}^TE_{dc}/kT) - n/\tau,$$

$$N_a^i = N_d^0 - N_d - n,$$
(11)

где n — концентрация электронов в зоне проводимости, τ — время рекомбинации, ω_d — частотный фактор, температурной зависимостью которого пренебрегаем. В условиях квазистационарности, т.е. при $n \ll N_d$, $dn/dt \ll dN_d/dt$ второе уравнение из системы упрощается: $n = \tau \omega_d \exp(-^T E_{dc}/kT)$. Граничное условие $N_d = N_d^0$ при $T \to 0$ приводит решение (11) к виду

$$N_a^i = N_d^0 \left\{ 1 - \left[1 + \tau \omega_d \exp(-{^T}E_{dc}/kT) \right] \times \exp\left[(-\omega_d kT^2/b \, {^T}E_{dc}) \exp(-{^T}E_{dc}/kT) \right] \right\}.$$
(12)

Это выражение позволяет получить ступенчатый рост $\alpha(T)$ в *B*-области, коррелирующий со спадом в *A*-области, например, для энергии фотона E = 3.06 eV (кривая 2 на рис. 3, *b*) при $\tau = 1$ s, $\omega_d = 4 \cdot 10^4 \text{ s}^{-1}$, $\sigma_B = 2 \cdot 10^{17} \text{ cm}^2$, $\alpha_{02} = 10 \text{ cm}^{-1}$.

Отметим, что температурной зависимостью сечения поглощения фотона в (8,9) можно пренебречь как более слабой по сравнению с экспоненциальной [31], а значения σ_A , $\sigma_B \sim (10^{-17} - 10^{-18}) \, {\rm cm}^2$ характерны для глубоких уровней, взаимодействующих с фононами [28].

Близкий к экспоненциальному общий рост поглощения с температурой в *B*-области наблюдается за счет переходов типа межзонных с участием фононов и "хвоста" энергетических состояний, примыкающих к потолку валентной зоны.

Если температурная зависимость оптического поглощения определяется изменением концентрации ионизированных акцепторов (или нейтральных доноров), то температурная зависимость скорости этого изменения есть аналог спектра тока ТСД I(T). Полученные зависимости $d\alpha/dT(T)$ для *B*-области спектра хорошо подтверждают это предположение, воспроизводя характерную для токов ТСД группу пиков, которые отжигаются в интервале ΔT_4 (помечены стрелками на рис. 5). Низкотемпературные (T < 300 K) пики спектров $d\alpha/dT(T)$ соответствуют (по положению на оси температур) пикам термостимулированной люминесценции, наблюдавшимся в кристаллах BSO: Fe и BSO: Ge [6].

Автор признателен Ю.Г. Осецкому за помощь в экспериментах.

Список литературы

- [1] W. Wardzynski, H. Szymczak, M. Baran. Physika **111B**, 47 (1981).
- [2] H.J. von Bardeleben. J. Phys. D.: Appl. Phys. 16, 29 (1983).
- [3] Д.Б. Сенулене, Г.А. Бабонас, Е.И. Леонов, И. Муминов, В.М. Орлов. ФТТ 26, 5, 1281 (1984).
- [4] Л.Б. Кулева, Е.И. Леонов, В.М. Орлов. ФТТ 29, 7, 2156 (1987).
- [5] Л.Б. Кулева, Е.И. Леонов, В.М. Орлов. ФТТ 30, 3, 921 (1988).
- [6] M.G. Jani and L.E. Halliburton. J. Appl. Phys. 64, 4, 2022 (1988).
- [7] N. Benjelloun, M. Tapiero, J.P. Zielinger, J.C. Launay, F. Marsaud. J. Appl. Phys. 64, 8, 4013 (1988).
- [8] В.И. Калинин, Ж.С. Кучук, Н.Г. Горащенко, А.А. Майер. Изв. АН СССР. Неорган. материалы. 24, 4, 637 (1988).
- [9] I. Foldvari, L.E. Halliburton, G.J. Edrards. Solid State Commun. 77, 3, 181 (1991).
- [10] J.J. Martin, I. Foldvari, C.A. Hunt. J. Appl. Phys. 70, 12, 7554 (1991).
- [11] B. Briat, J.C. Fabre, V. Topa. In: Proceeding of the XII Int. Conf. "Defects in Insulating Materials" / Ed. by O. Ranert and J.M. Spaeth. Word Scientific, London (1993). V. 2. P. 1160.
- [12] I. Foldvari, R.I. Reeves, I.I. Martin, R.C. Powell. In: Topical Meeting on "Photorefractive Materials, Effects and Devices PRM'93". Kiev, Ukraine (1993). P. 275.
- [13] T.V. Panchenko, Yu.G. Osetsky, N.A. Truseyeva. Ferroelectrics 174, 61 (1995).
- [14] B. Briat, A. Hamri, F. Ramaz, H. Bou Rjeily. SPIE Proceeding **3178**, 160 (1997) [XII Conference on Solid State Crystals. Materials Sciences and Applications. October 7–11, Zakopane, Polland] (1996).
- [15] Ю.И. Уханов. Оптические свойства полупроводников. М. (1977). С. 366.
- [16] F. Stern. Phys. Rev. 133, 1653 (1979).
- [17] A.T. Futro. J. Phys. Chem. Sol. 40. 1, 201 (1979).
- [18] Т.В. Панченко, Ю.Н. Потапович, Г.В. Снежной. Измер. техника 7, 54, (1992).
- [19] R. Oberschmid. Phys. Stat. Sol. (a) 89, 263 (1985).
- [20] Т.В. Панченко, В.Х. Костюк, С.Ю. Копылова. ФТТ 38, 1, 155 (1996).
- [21] А.Н. Платонов. Природа окраски минералов. Наукова думка, Киев (1976). 264 с.
- [22] Y. Marh. Phys. Rev. 125, 1510 (1962).
- [23] Е.И. Леонов, А.Е. Семенов, А.Г. Щербаков. ФТТ 28, 5, 1590 (1986).
- [24] T. Toyoda, H. Nakanishi, S. Endo, T. Irie. J. Phys. C: Solid State Phys. 19, L259 (1986).
- [25] Т.В. Панченко, С.Ю. Копылова, Ю.Г. Осецкий. ФТТ 37, 9, 2578 (1995).
- [26] M.T. Boroviec. SPIE 3178 Proceeding, 173 (1997)
 [XII Conference on Solid State Crystals Materials Science and Applications. October 7–11, Zakopane, Polland (1996)].
- [27] Ю.Н. Гороховатский. Основы термодеполяризационного анализа. Наука, М. (1981). 173 с.
- [28] Б. Ридли. Квантовые процессы в полупроводниках. Мир, М. (1986). 303 с.
- [29] Т.В. Панченко, Г.В. Снежной. ФТТ 35, 12, 3248 (1993).
- [30] Т.В. Панченко. ФТТ 40, 3, 452 (1998).
- [31] А.А. Копылов, А.Н. Пихтин. ФТТ 16, 7, 1837 (1974).