Эффект Шубникова-де Гааза в трикристаллах сплавов $Bi_{1-x}Sb_x$ (x = 0.1; 0.13) *n*-типа проводимости

© Ф.М. Мунтяну, Ю.А. Дубковецкий, Г.А. Киоссе, А. Гилевски*

Институт прикладной физики Академии наук Молдавии, MD-2028 Кишинев, Молдавия *Международная лаборатория сильных магнитных полей и низких температур, 53-529 Вроцлав, Польша

(Поступила в окончательном виде 22 октября 1998 г.)

Исследован эффект Шубникова-де Гааза в трикристаллах сплавов Bi_{1-x}Sb_x (x = 0.1; 0.13) *п*-типа проводимости в стационарных (до 14 T) и импульсных (до 40 T) магнитных полях. Наблюдались реконструкция внутренней границы трикристаллов, а также ряд новых составляющих осцилляций $\rho(B)$, свидетельствующих о вращении изоэнергетических поверхностей *L*-электронов на межкристаллитной границе на угол ~ 74° в бинарно-тригональной плоскости.

Недавно обнаружены составляющие осцилляций Шубникова–де Гааза (ШдГ) в бикристаллах сплавов $Bi_{1-x}Sb_x$ *п*-типа проводимости, свидетельствующие о вращении эллипсоидов эффективных масс L-электронов на границе раздела кристаллитов (относительно их положения в моноблоках (МБ)) примерно на 74° [1,2]. Межкристаллитная граница этих бикристаллов была весьма близка к когерентному двойнику, однако наблюдался [3] разный вклад дислокаций в осцилляционную картину для малоугловых и большеугловых границ. Значительный интерес представляют объекты с более сложными механическими напряжениями, как например трикристаллы (в [4] трикристаллические переходы использовались для исследования симметрии спаренного состояния в ВТСП), где локально встречаются три индивида, имеющие разные углы разворота, и где наблюдаются большие скопления дефектов и дислокаций со сложной картиной их переплетения.

В настоящей работе исследовались два трикристалла полупроводниковых сплавов $\text{Bi}_{1-x}\text{Sb}_x$ (x = 0.1; x = 0.13) *п*-типа проводимости (образцы специально легировались донорными примесями Te). Заметим, что поверхность Ферми (ПФ) этих сплавов состоит из трех разноосных квазиэллипсоидов, центрированных в точках L зоны Бриллюэна и повернутых в бинарной плоскости на угол ~5° [5].

Образцы для измерений изготавливались в форме параллелепипеда. Внутренние границы (*IB*) трикристаллов шириной 140 $\leq L \leq$ 300 nm были близки к типу наклона. Плоскости внутренних границ (*PIB*) были почти параллельны тригональной оси *C*₃ кристаллитов. Углы наклона Θ_i кристаллитов составляли у образца *T*₁ (x = 0.13) $\Theta_1(AC) \sim 12^\circ$, $\Theta_2(CB) \sim 6^\circ$, $\Theta_3(AB) \sim 4^\circ$, у образца *T*₂ (x = 0.1) $\Theta_1(AC) \sim 10^\circ$, $\Theta_2(CB) \sim 4^\circ$, $\Theta_3(AB) \sim 2^\circ$. Контакты к внутренним границам приваривались электроискровой сваркой (схематичная иллюстрация трикристалла с контактами приведена на вставке к рис. 1). Состав образцов контролировался рентгеновскими методами. Интегральная концентрация электронов *N* определялась по величине коэффициента Холла в сильном магнитном поле (классический предел) $R_{\infty} = -(eN)^{-1}$. В напих образцах величина N была порядка $1.2 \cdot 10^{18}$ cm⁻³ (T_1) и $1.36 \cdot 10^{18}$ cm⁻³ (T_2) . Измерения в стационарных (до 14 T) и импульсных (до 40 T) магнитных полях проведены в Международной лаборатории сильных магнитных полей и низких температур (г. Вроцлав, Польша). Эффект ШдГ исследовался на установках, позволяющих производить запись кривых магнитосопротивления в прямом и обратном полях, компенсировать монотонную составляющую, определить частоты гармоник с помощью Фурье-анализа и др. Далее представлены основные результаты измерения эффекта ШдГ на образцах T_1 и T_2 .

Известно, что при ориентации магнитного поля $B \parallel C_2$ у монокристаллов сплава Bi_{1-r}Sb_r *n*-типа проводимости наблюдаются две гармоники осцилляций $\rho(B)$: низкочастотная, связанная с минимальными сечениями двух эквивалентных квазиэллипсоидов L-электронов, и высокочастотная, характеризующая максимальное сечение третьего квазиэллипсоида. Осцилляции сильно разнесены по магнитному полю из-за анизотропии ПФ L-электронов. Как видно из рис. 1 и 2, b трикристаллах при направлениях магнитного поля $B \perp PIB$ (близких к оси С2 кристаллитов) отчетливо проявляются три гармоники осцилляций магнитосопротивления, причем величины их частот не зависят от внутренних границ конкретного трикристалла. Например, у трикристалла *Т*₁ частоты этих осцилляций соответственно равны $\Delta_1 (1/H)^{-1} \approx 2.7T$, $\Delta_2(1/H)^{-1} \approx 52.6T$ и $\Delta_3(1/H)^{-1} \approx 29.7T$. Дополнительная частота $\Delta_3(1/H)^{-1}$ на осцилляционных кривых $\rho(B)$, которая на монокристаллах не наблюдается, возникает за квантовым пределом для низкочастотной гармоники. Обнаружено, что фаза этих осцилляций, также как и порядок следования пиков осцилляций для спинов по полю и против поля у низкочастотной гармоники зависят от состояния внутренних границ. Особенно это заметно в осцилляционной картине $\rho(B)$ от внутренней границы между моноблоками B и C (IB(BC)), где дополнительная составляющая осциллирует в противофазе и нарушен порядок следования максимумов осцилляций с проти-

Рис. 1. Эффект ШдГ в трикристалле T_1 (стационарные магнитные поля) при 4.2 К и $B \perp PIB$. Для кривых 2, 4 шкала увеличена в два раза, для кривой 3 — в три раза. Кривая 3 снята до термообработки, кривая 4 — после. На вставке: схема образца с контактами (A, B, C — монокристаллические блоки).

воположной ориентацией спина. После термообработки IB(BC) возвращается в равновесное состояние, при этом меняется фаза осцилляций на π и восстанавливается нормальный порядок следования подуровней Ландау (рис. 1). Процесс реконструкции IB(BC), вероятнее всего, произошел со сдвигом кристаллографических плоскостей на четверть периода в противоположных направлениях соответственно двум направлениям спина [6]. Об этом свидетельствуют и прямые расчеты фактора спинового расщепления $\gamma = \Delta_{sp}/\Delta_{orb}$, и температуры Дингла T_D *L*-электронов при $B \parallel C_2$, а именно: до термообработки IB(BC) $\gamma \approx 0.32$, $T_D \approx 1.4$ K; после — $\gamma \approx 0.7$, $T_D \approx 0.5$ K.

При ориентации магнитного поля В || РІВ (близкой к оси С₃ кристаллитов) у трикристаллов сплавов Bi_{1-x}Sb_x *n*-типа проводимости, также как и у бикристаллов [1,2], наблюдаются две частоты осцилляций, тогда как у монокристаллов при этой ориентации поля проявляется только одна частота, связанная с большими сечениями ПФ *L*-электронов. Причем их отношение $k = \Delta_1(1/H)^{-1}/\Delta_2(1/H)^{-1}$ $(k_1 \sim 4(T_1); k_2 \sim 6(T_2))$ зависит от концентрации компонент в сплавах и степени заполнения изоэнергетических поверхностей. У низкочастотной гармоники, специфической для бикристаллов и трикристаллов, максимумы осцилляций в квантовой области полей расщепляются по спину, а фаза осцилляций при $1/B \rightarrow 0$ экстраполируется на целочисленное значение. Высокочастотная гармоника главным образом проявляется (рис. 2) в сильных магнитных полях (B > 7 T), и на последних максимумах осцилляций отсутствует спиновое расщепление.

Отличительной особенностью осцилляционных зависимостей магнитосопротивления в трикристаллах при направлениях магнитного поля вдоль PIB(AC) (близких к направлению биссекторной оси C_1 кристаллитов) является то, что помимо двух типов осцилляций с отношением частот 2:1, которые наблюдаются на монокристаллах и бикристаллах, при B > 10 Т появляется составляющая, связанная с большими сечениями ПФ *L*-электронов.

Рис. 2. Эффект ШдГ в трикристалле T_1 (импульсные магнитные поля) при 4.2 К. Монотонная часть $\rho(B)$ скомпенсирована. $I - B \perp PIB \perp J, 2 - B \parallel PIB \perp J, 3 - B \parallel PIB \parallel J$. На вставке: электронная часть поверхности Ферми сплавов Bi–Sb.

Результаты, полученные на трикристаллах при *В* || *PIB*, фактически подтверждают выводы работ [1,2] об образовании на внутренних границах дискретного спектра электронных состояний [7] и нового типа симметрии, связанного с поворотом главных осей ПФ в пространстве. В связи с этим, новая низкочастотная гармоника характеризует одинаковые по величине сечения квазиэллипсоидов b и c (см. вставку на рис. 2), главные оси которых поворачиваются на внутренних границах на угол ~74° относительно положения в МБ. Высокочастотная гармоника связана с площадью экстремального сечения третьего квазиэллипсоида (а), которая практически не изменяется по величине при повороте и все время совпадает с площадью больших сечений трех эквивалентных квазиэллипсоидов МБ при В || С3. Измеренные угловые зависимости периодов осцилляций трикристаллов в бинарно-тригональной плоскости ΜБ показывают, что низкочастотная гармоника при В || РІВ плавно (описывая ветвь эллипсоида) переходит в дополнительную частоту при *B* \perp *PIB* в соответствии с концепцией о вращении ПФ на внутренней границе.

Возникновение частоты, связанной с большими сечениями ПФ *L*-электронов в трикристаллах при направлениях поля вдоль PIB(AC) (у монокристаллов и бикристаллов данная гармоника отсутствует), указывает на вклад в осцилляционную картину $\rho(B)$ ПФ наклонных (относительно IB(AC)) межкристаллитных границ. Только в случае вращения ПФ на этих внутренних границах, сечения, близкие к максимальному, могут оказаться ориентированными перпендикулярно направлению магнитного поля.

Авторы выражают глубокую благодарность Я. Клямуту и Т. Палевскому за помощь в проведении настоящих исследований в Международной лаборатории.

Список литературы

- F. Muntyanu, M. Onu, Yu. Dubkovetskii, V. Kistol. Czech. J. Phys. 46, Suppl. S4, 2039 (1996).
- [2] F.M. Muntyanu, Yu.A. Dubkovetskii. Phys. Stat. Sol. (b) 203, 473 (1997).
- [3] Ф.М. Мунтяну, М. Глиньски, Г.А. Киоссе, В.Г. Кистол. ФТТ 33, 6, 1881 (1991).
- [4] Z.G. Zou, Q.Y. Ying, J.H. Miller, jr., J.H. Xu, N.Q. Fan. J. Superconductivity 8, 5, 679 (1995).
- [5] Г.А. Миронова, М.В. Судакова, Я.Г. Пономарев. ЖЭТФ 78, 5, 1830 (1980).
- [6] Д. Шенберг. Магнитные осцилляции в металлах. Мир, М. (1986). 678 с.
- [7] С.Н. Бурмистров, Л.Б. Дубовский. ЖЭТФ 94, 9, 173 (1988).