Электронные и электрон-фононные явления в низкоразмерных органических проводниках и сверхпроводниках на основе молекулы BEDT-TTF

© Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ*, Е.И. Жиляева*, Р.Н. Любовская*, Э.Б. Ягубский*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

*Институт химической физики Российской академии наук,

142232 Черноголовка Московская обл. Россия

Спектральным микрооптическим методом изучены две родственные группы ион-радикальных солей (BEDT-TTF) k-фазы, имеющие различные электрические свойства: сверхпроводники с различной температурой перехода в сверхпроводящее состояние и проводники, которые при понижении температуры переходят в диэлектрическое состояние. Измерены поляризационные спектры отражения микрокристаллов в спектральной области 700– $40\,000\,\mathrm{cm^{-1}}$ для трех главных направлений в кристалле, получены соответствующие спектры оптических функций. Установлен двумерный характер анизотропии электронной системы в кристаллах. Проведен количественный анализ полученных спектров, определены ключевые параметры электронной энергетической структуры и константы электронно-колебательного взаимодействия (ЭКВ). Сделано заключение, что проводники имеют по сравнению со сверхпроводниками меньшие константы ЭКВ, более узкие разрешенные электронные зоны и более сильное электрон-электронное взаимодействие, а также что ЭКВ является необходимым условием появления сверхпроводимости в исследованных сверхпроводниках.

В процессе целенаправленного синтеза высокопроводящих органических материалов для целей молекулярной электроники и поиска органических сверхпроводников недавно синтезированы две родственные группы новых ион-радикальных солей на основе bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) [1,2]. Соединения обеих групп имеют близкую кристаллическую структуру, состоящую из слоев ортогональных димеров (BEDT-TTF) $_2^+$ (k-фаза), разделенных слоями соответствующих полимерных анионов, но существенно различаются по своим электрическим свойствам.

Соли первой группы представляют собой сверхпроводники с различной температурой перехода в сверхпроводящее состояние, T_c , в том числе соли с максимальной T_c для органических соединений k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]X, X = Cl (T_c = 12.3K); Br (T_c = 11.6K); Cl $_0$.5Br $_0$.5 (T_c = 11.3K).

Соли второй группы — это проводники, которые при понижении температуры переходят в диэлектрическое состояние k-(BEDT-TTF)₂[Hg(SCN)_{3-n}X_n] (X = Cl, Br, n = 1, 2).

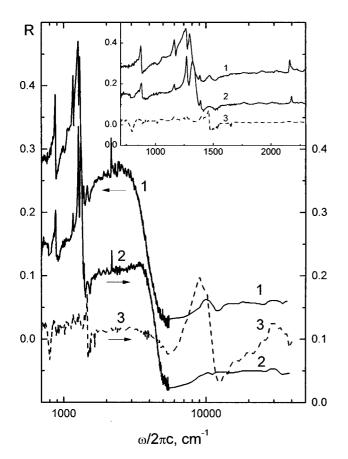
В данной работе представлен краткий обзор наших последних исследований оптических свойств монокристаллов указанных двух групп соединений в широкой спектральной области методом микроскопной техники [3–10]. Главной задачей этих исследований является изучение электронной энергетической структуры кристаллов, изучение электрон-фононных и электрон-электронных взаимодействий и их роли в формировании основного состояния в кристаллах; выявление основных различий ключевых параметров электронной системы и констант электронно-колебательного взаимодействия (ЭКВ) у сверхпроводников с различной T_c , а также у проводящих и сверхпроводящих кристаллов.

1. Эксперимент

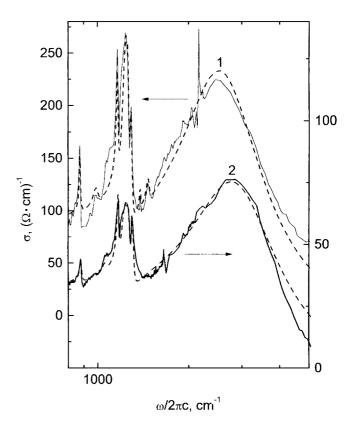
Кристаллы обеих групп относятся к ромбической или моноклинной сингониям и представляют собой тонкие, черные, с металлическим блеском ромбические пластинки с типичными размерами $0.5 \times 0.5 \times 0.05 \, \text{mm}^3$. Проводящие слои молекул BEDT-TTF в кристаллах параллельны наиболее развитым граням (010) и (100) для 1-й и 2-й групп, соответственно. Нами измерены поляризационные спектры отражения $R(\omega)$ в области $700-40\,000\,{\rm cm}^{-1}$ при комнатной температуре при нормальном падении света на различные грани кристаллов в поляризациях, когда электрический вектор световой волны Е параллелен и перпендикулярен слоям молекул ВЕДТ-ТТГ. Получены соответствующие оптические функции кристалла. Экспериментальная техника и особенности обработки экспериментальных спектров описаны нами ранее в работах [6, 8].

2. Экспериментальные результаты

На рис. 1 представлены спектры отражения $R(\omega)$ сверхпроводника k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]X, X = Cl $_{0.5}$ Br $_{0.5}$ от наиболее развитой (010) и узкой боковой (101) граней кристалла в поляризациях, когда вектор \mathbf{E} параллелен ($\mathbf{E} \parallel a$, $\mathbf{E} \parallel c$) и перпендикулярен ($\mathbf{E} \parallel b$) проводящим слоям BEDT-TTF. Аналогичные спектры получены для кристаллов с X = Br и Cl [8], а также представлены ранее в работах [11, 12] для $\mathbf{E} \parallel a$, $\mathbf{E} \parallel c$. Из рис. 1 видно, что в поляризациях $\mathbf{E} \parallel a$, $\mathbf{E} \parallel c$ кристаллы имеют высокое электронное отражение с интенсивной колебательной структурой в области 700–1500 cm $^{-1}$, ярко выраженный плазменный край вблизи $4500\,\mathrm{cm}^{-1}$ и связанный с ним глубокий


10 897

минимум при $5500\,\mathrm{cm}^{-1}$. Видно также, что анизотропия в плоскости проводящих слоев BEDT-TTF невелика. В противоположность этому, в поляризации $\mathbf{E}\parallel b$, когда \mathbf{E} перпендикулярен слоям BEDT-TTF, отражение в ИК области ($700-5500\,\mathrm{cm}^{-1}$) низкое, как у диэлектрика, и практически не зависит от частоты. Обнаруженная оптическая анизотропия указывает на квазидвумерный характер проводящей электронной системы в кристаллах.


В области $9000-40\,000\,\mathrm{cm^{-1}}$ наблюдаются широкие полосы, которые наиболее интенсивно проявляются для $\mathbf{E}\parallel b$ и относятся к электронным внутримолекулярным переходам в катионах (BEDT-TTF) $_2^+$, поляризованным вдоль длинной оси молекулы BEDT-TTF.

Измерения показали, что спектры проводников [7, 9, 10] качественно подобны спектрам сверхпроводников. Различие заключается в том, что в проводниках отражения квазидвумерной электронной системой с учетом колебательной структуры более слабое, чем в сверхпроводниках, а плазменный максимум расположен при более низкой частоте.

Спектры оптической проводимости $\sigma(\omega)$ сверхпроводника k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]Cl $_0.5$ Br $_0.5$ (**E** \parallel a) и проводника k-(BEDT-TTF) $_2$ [Hg(SCN)Cl $_2$](**E** \parallel b) приведены на рис. 2 для области 700–5500 cm $^{-1}$. Полученные спектры являются типичными (качественно) и для

Рис. 1. Спектры отражения сверхпроводника k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]Cl $_0$. $_5$ Вг $_0$. $_5$ для $\mathbf{E}||a|(1)$, $\mathbf{E}||c|(2)$ и $\mathbf{E}||b|(3)$.

Рис. 2. Спектры оптической проводимости сверхпроводника k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]Cl $_0.5$ Br $_0.5$ (I) и проводника k-(BEDT-TTF) $_2$ [Hg(SCN)Cl $_2$] (2).

других соединений обеих групп. Как и следовало ожидать, спектры существенно отличаются от характерной для металлов простой друдевской зависимости $\sigma(\omega)$: в спектрах наблюдается широкий максимум вблизи 2300 и 2600 сm $^{-1}$ соответственно, на низкочастотном краю которого расположена интенсивная колебательная структура. Как видно из рис. 2, оптическая проводимость сверхпроводника — величина максимума и интенсивность колебательной структуры заметно больше, чем у проводника. В спектрах $\sigma(\omega)$ для ($\mathbf{E} \parallel c$) подобный широкий максимум у обоих кристаллов расположен при более высокой частоте (3000 сm $^{-1}$).

3. Обсуждение результатов

Природа широкого максимума в спектрах $\sigma(\omega)$ сверхпроводников связана, по-видимому, с междузонными электронными переходами, которые накладываются на внутризонные переходы носителей заряда [11,12]. Мы полагаем, что в спектрах проводников широкий максимум определяется переходом электронов между соседними молекулами в двух смежных ортогональных димерах (ВЕDT-TTF) $_2^+$ [9]. Интенсивная колебательная структура на низкочастотном краю максимумов обусловлена взаимодействием указанных электронных переходов с полносимметричными внутримолекулярными колебани-

Значения T_c и λ исследованных органических сверхпроводников. ET — сокращенное обозначение для BEDT–TTF

Соединение	T_c , K	λ	<i>T_c</i> (K)/4.3K (экспер.)	<i>T_c</i> (K)/4.3K (расчет)
$(ET)_4Hg_{2.89}Br_8$	4.3	0.20	1	1
k-(ET) ₂ Cu(NCS) ₂	10.4	0.25	2.5	2.7
k-(ET) ₂ Cu[N(CN) ₂]Cl _{0.5} Br _{0.5}	11.3	0.26	2.7	3.2
k-(ET) ₂ Cu[N(CN) ₂]Br	11.6	0.26	2.7	3.2
k-(ET) ₂ Cu[N(CN) ₂]Cl	12.8	0.26	2.7	3.2

ями (a_g -ВМК) ВЕDT-ТТF. Детальное отнесение этой электронно-колебательной структуры к определенной форме (a_g -ВМК) обсуждается нами в работах [4,6–8].

Количественный анализ представленных спектров был проведен нами на основе теории оптических свойств низкоразмерных органических проводников [13]. Путем специальной подгонки теоретических и экспериментальных спектров $\sigma(\omega)$ (рис. 2) были определены ключевые параметры, характеризующие квазидвумерную электронную систему (ω_p , Δ , V/Δ , Γ_e), и константы ЭКВ (индивидуальные (λ_α) и суммарная (λ_α). Полученные значения этих параметров приведены в [4,6–8].

В таблице приводятся значения λ для исследованного ряда органических сверхпроводников, в котором T_c увеличивается в отношении 1:2.5:2.7. Видно, что сверхпроводники с большей T_c имеют большую константу ЭКВ λ . При этом оказывается, что отношение T_c , вычисленное нами по известной формуле БКШ ($k_BT_c\approx 1.13h\omega_D\exp(-1/\lambda)$) с использованием представленных в таблице значений λ , близко к приведенному выше экспериментальному отношению. Этот результат указывает, по нашему мнению, на существенную роль ЭКВ в появлении сверхпроводимости в исследованных соединениях.

Как было отмечено выше, проводники имеют по сравнению со сверхпроводниками значительно меньшую оптическую проводимость, обусловленную электронными переходами в квазидвумерной электронной системе и связанной с ней электронно-колебательной структурой. Для количественного сравнения этого различия мы определили плазменную частоту $\omega_p^2=8\int\sigma(\omega)d\omega,$ характеризующую силу осциллятора этого перехода (пределы интегрирования $0-6000\,\mathrm{cm}^{-1}$). Оказалось, что для проводников k-(BEDT–TTF)₂[Hg(SCN)Cl₂] и k-(BEDT-TTF)₂[Hg(SCN)₂Br] $\omega_p = 3270$ и 4240 cm⁻¹ $(\mathbf{E} \parallel b)$ соответственно. Для сверхпроводников минимальная величина $\omega_p = 5600\,\mathrm{cm}^{-1}$ (для k-(BEDT– $TTF)_2Cu[N(CN)_2]Cl_{0.5}Br_{0.5}$), а максимальная величина $\omega_p = 6800 \, \mathrm{cm}^{-1}$ (для k-(BEDT-TTF)₂Cu[N(CN)₂]Br). Оценивая эффективную массу электронов m^* по формуле $\omega_p^2 = 4\pi N e^2/m^*$ (где N — концентрация носителей заряда, равная концентрации димеров, $= 1.1 \cdot 10^{21} \,\mathrm{cm}^{-3}$), получим $(m^*/m) = 8.4$

для k-(BEDT-TTF) $_2$ [Hg(SCN)Cl $_2$] и (m^*/m) = 2.6 для k-(BEDT-TTF) $_2$ Cu[N(CN) $_2$]Вг. Бо́льшая величина эффективной массы для проводников не связана, повидимому, с образованием молекулярных поляронов, поскольку найденная константа ЭКВ для проводников ($\lambda=0.18$ [7]) меньше, чем у сверхпроводников ($\lambda=0.26$ [6,8]). На этом основании мы полагаем, что бо́льшие значения m^* указывают на существенную роль электрон-электронных взаимодействий в изученных проводниках.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты N_{2} 98–02–18303, 97–03–33686а и 97–03–33581).

Список литературы

- J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H.H. Wang, A.M. Kini, M.-H. Whangbo. Organic Superconductors (Including Fullerenes): synthesis, structure, properties, and theory. Prentice Hall: Englewood Cliffs, NJ (1992).
- [2] M.Z. Aldoshina, R.N. Lyubovskaya, S.V. Konovalikhin, O.A. Dyachenko, G.V. Shilov, M.K. Makova, R.B. Lyubovskii. Synth. Metals 55–57, 1905 (1993).
- [3] Р.М. Власова, Р.Н. Любовская, Е.И. Жиляева, С.Я. Приев, В.Н. Семкин. ФТТ 32, 10 3024 (1990).
- [4] R.M. Vlasova, S.Ya. Priev, V.N. Semkin, R.N. Lyubovskaya, E.I. Zhilyaeva, E.B. Yagubskii, V.M. Yartsev. Synth. Metals 48, 129 (1992).
- [5] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Куш, Э.Б. Ягубский. ФТТ 35, 3 795 (1993).
- [6] O.O. Drozdova, V.N. Semkin, R.M. Vlasova, N.D. Kushch, E.B. Yagubskii. Synth. Metals 64, 17 (1994).
- [7] Р.М. Власова, О.О. Дроздова, Р.Н. Любовская, В.Н. Семкин. ФТТ 37, 3 703 (1995).
- [8] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Куш, Э.Б. Ягубский. ФТТ 38, 3 869 (1996).
- [9] V.M. Yartsev, O.O. Drozdova, V.N. Semkin, R.M. Vlasova. J. Phys. I France 6, 1673 (1996).
- [10] Р.М. Власова, Н.В. Дричко, О.О. Дроздова, Р.Н. Любовская. ФТТ **39**, *8* 1313 (1997).
- [11] J.E. Eldridge, K. Kornelsen, H.H. Wang, J.M. Williams, A.V. Strieby Crouch, D.M. Watkins. Solid State Commun. 79, 7, 583 (1991).
- [12] K. Kornelsen, J.E. Eldridge, H.H. Wang, H.A. Charlier, J.M. Williams, Solid State Commun. 81, 4, 343 (1992).
- [13] M.J. Rice. Phys. Rev. Lett. 37, 1, 36 (1976).

 $^{^{1}}$ ω_{p} — плазменная частота; Δ , V — энергетический зазор с учетом и без учета ЭКВ; Γ_{e} — параметр электронного затухания.