Влияние диссипации на свойства поверхностных поляритонов в гетеропереходах GaAs/AlGaAs в квантующем магнитном поле

© Н.Н. Белецкий, С.А. Борисенко

Институт радиофизики и электроники Академии наук Украины, 310085 Харьков, Украина E-mail: beletski@ire.kharkov.ua

(Поступила в Редакцию 9 июля 1998 г.)

Исследованы нерадиационные поляритоны (поверхностные и объемные) в реальных гетеропереходах GaAs/Al_xGa_{1-x}As в условиях целочисленного квантового эффекта Холла (ЦКЭХ) при наличии диссипации в двумерном электронном слое. Определены условия их существования, спектр и затухание. Показано, что в условиях ЦКЭХ все характеристики поверхностных и объемных поляритонов являются квантованными. Найдено, что с изменением волнового числа поверхностные и объемные поляритоны могут непрерывным образом трансформироваться друг в друга. Обсуждены возможности экспериментального наблюдения нерадиационных поляритонов.

1. Поверхностные поляритоны на границах двумерных электронных систем (ДЭС), находящихся во внешнем магнитном поле привлекают к себе пристальное внимание [1–5]. Особый интерес представляет случай сильных магнитных полей, когда в ДЭС имеет место (ЦКЭХ) [6,7]. В условиях ЦКЭХ компоненты тензора высокочастотной проводимости ДЭС квантуются, т.е. изменяются скачкообразным образом с изменением магнитного поля. В результате все характеристики поверхностных поляритонов также становятся квантованными. Детально свойства поверхностных поляритонов в условиях ЦКЭХ исседованы для двух случаев: одиночной ДЭС [6] и двойной ДЭС [7]. В работах [6,7] было показано, что групповая скорость поверхностных поляритонов в условиях ЦКЭХ испытывает скачки, пропорциональные постоянной тонкой структуры $\alpha = e^2/c\hbar$, где e — заряд электрона, c — скорость света, $\hbar = h/2\pi$, *h* — постоянная Планка.

Вместе с тем, свойства поверхностных поляритонов были исследованы в работе [6] в предположении, что плоскость, которую занимает ДЭС, помещена в однородную среду с проницаемостью є. В действительности реальная структура гетероперехода $GaAs/Al_xGa_{1-x}As$, который моделирует ДЭС, является более сложной. На самом деле легированный слой Al_xGa_{1-x}As имеет конечную толщину. В результате электроны, образующие ДЭС, лежат между слоем GaAs (этот слой образует подложку и толщину этого слоя можно считать бесконечной) и слоем Al_xGa_{1-x}As, граничащим с вакуумом/воздухом. Кроме того, в работах [8,9] было отмечено, что диэлектрические проницаемости $Al_xGa_{1-x}As$ и GaAs являются различными. В этих работах отношение диэлектрической проницаемости Al_xGa_{1-x}As к диэлектрической проницаемости GaAs было равным 0.95. Эти обстоятельства могут привести к качественно новым особенностям в распространении поверхностных поляритонов вдоль реального гетероперехода $GaAs/Al_xGa_{1-x}As$. Кроме того, в релаьной ситуации необходимо учитывать диссипацию в ДЭС. Она может привести не только

к количественному изменению спектра поверхностных поляритонов, но и к появлению новых типов нерадиационных поляритонов (как поверхностных, так и объемных), электромагнитное поле которых экспоненциально убывает от обеих границ слоя $Al_xGa_{1-x}As$.

В настоящей работе исследованы нерадиационные поляритоны в реальных гетеропереходах GaAs/Al_xGa_{1-x}As в условиях ЦКЭХ. Изучено влияние толщины слоя Al_xGa_{1-x}As и величины диссипации энергии в ДЭС на условия существования, спектр и затухание нерадиационных поляритонов. Показано, что кроме поверхностных поляритонов, локализованных на границе $GaAs-Al_rGa_{1-r}As$, в гетеропереходе может существовать и другой тип поверхностных поляритонов, которые локализованы на границе Al_xGa_{1-x}As-вакуум/воздух (моды Брюстера). Найдено, что кроме этих двух типов поверхностных поляритонов в гетеропереходе GaAs/Al_xGa_{1-x}As могут распространяться объемные поляритоны разных порядков, которые имеют один или несколько максимумов потока энергии в слое $Al_xGa_{1-x}As$. Отмечено, что в условиях ЦКЭХ все характеристики поверхностных и объемных поляритонов являются квантованными. Определено, что с изменением волнового числа поверхностные и объемные поляритоны могут непрерывным образом трансформироваться друг в друга.

2. В качестве модели гетероперехода GaAs/Al_xGa_{1-x}As рассмотрим структуру, изображенную на рис. 1. Она состоит из двух полуограниченных сред 1 (z > d) и 3 (z < 0) с диэлектрическими проницаемостями ε_1 и ε_3 соответственно. Между этими средами помещен слой полупроводника толщины d (среда 2) с диэлектрической проницаемостью ε_2 . Пусть среда 2 представляет собой полупроводник Al_xGa_{1-x}As, а среда 3 — полупроводник GaAs. Эти два полупроводника образуют ДЭС на границе z = 0. Внешнее квантующее магнитное поле **B** направлено вдоль оси z перпендикулярно ДЭС. Авторы предполагают, что поляритоны в рассматриваемой структуре являются нерадиационными, т. е. их электромагнитные поля в средах 1 и 3 экспоненциально убывают с

Рис. 1. Геометрия гетероперехода GaAs/Al_xGa_{1-x}As. Полуограниченная среда *1* представляет собой вакуум/воздух с диэлектрической проницаемостью $\varepsilon_1 = 1$; среда 2 — слой полупроводника Al_xGa_{1-x}As толщиной *d* с диэлектрической проницаемостью $\varepsilon_2 = 12.0$; полуограниченная среда 3 — полупроводник GaAs с диэлектрической проницаемостью $\varepsilon_3 = 12.9$.

увеличением расстояния от границ слоя 2. Без ограничения общности будем считать, что нерадиационные поляритоны распространяются вдоль оси x. Зависимость всех электромагнитных полей от координаты x и времени t будем описывать выражением $\exp[i(kx - \omega t)]$, где k — волновое число, а ω — частота волны.

Для получения дисперсионного уравнения, описывающего распространение нерадиационных поляритонов в гетеропереходе GaAs/Al_xGa_{1-x}As, необходимо учитывать два типа волн: *TE*- и *TM*-волны. Это обусловлено наличием поверхностного тока на границе ДЭС z = 0, который оказывает влияние как на *TE*-, так и на *TM*-волны [10]. Мы считаем, что на границе z = d тангенциальные компоненты электрического **E** и магнитного **H** полей нерадиационных волн непрерывны, а на границе z = 0 тангенциальные компоненты магнитного поля терпят разрыв

$$H_{x,2}^{(s)} = H_{x,3}^{(s)} = \frac{4\pi}{c} \left(\sigma_{xx} E_y^{(s)} - \sigma_{xy} E_x^{(s)} \right), \qquad (1a)$$

$$H_{y,2}^{(s)} = H_{y,3}^{(s)} = -\frac{4\pi}{c} \left(\sigma_{xx} E_x^{(s)} + \sigma_{xy} E_y^{(s)} \right).$$
(1b)

Здесь $\sigma_{ij}(\omega)$ — компоненты тензора проводимости ДЭС, индекс *s* обозначает, что значения электрического и магнитного полей в формулах (1 *a*, *b*) вычисляются на границе z = 0. Полагаем, что пространственной дисперсией тензора проводимости ДЭС можно пренебречь, т. е. считаем, что $kl \ll 1$, где $l = (c\hbar/eB)^{1/2}$ — магнитная длина. Тогда отличные от нуля компоненты тензора проводимости ДЭС имеют вид [6,7]

$$\sigma_{xx} = \frac{2e^2}{h} \frac{N\gamma}{1+\gamma^2},\tag{2a}$$

$$\sigma_{xy} = \frac{2e^2}{h} \frac{N}{1+\gamma^2}.$$
 (2b)

(3)

В уравнениях (2 *a*, *b*), $\gamma = (\nu - i\omega)/\Omega$, где $\Omega = eB/mc$ — циклотронная частота электронов, ν — частота релаксации импульса электронов, $N = \pi l^2 n$ — фактор заполнения уровней Ландау, который принимает целочисленные значения (N = 1, 2, ...), равные числу полностью заполненных уровней Ландау, лежащих ниже уровня Ферми (n — плотность электронов в ДЭС) [6,7].

Используя вышеуказанные граничные условия, находим следующее дисперсионное уравнение, описывающее распространение нерадиационных поляритонов в исследуемом гетеропереходе:

 $A_1A_2 + (4\pi\sigma_{yy}/c)^2 p_2 p_3 B_1 B_2 = 0,$

где

$$A_{1} = \left(p_{3}\varepsilon_{2} - p_{2}\varepsilon_{3} - (i4\pi p_{2}p_{3}\sigma_{xx}/\omega)\right)\left(p_{2}\varepsilon_{1} - p_{1}\varepsilon_{2}\right)$$

$$+ \exp(2p_{2}d)\left(p_{3}\varepsilon_{2} + p_{2}\varepsilon_{3} + (i4\pi p_{2}p_{3}\sigma_{xx}/\omega)\right)$$

$$\times \left(p_{2}\varepsilon_{1} + p_{1}\varepsilon_{2}\right), \qquad (4)$$

$$A_{2} = \left(p_{2} - p_{3} + (i4\pi\omega\sigma_{xx}/c^{2})\right)\left(p_{2} - p_{1}\right)$$

$$- \exp(2p_{2}d)\left(p_{2} + p_{3} - (i4\pi\omega\sigma_{xx}/c^{2})\right)$$

$$\times \left(p_{2} + p_{1}\right), \qquad (5)$$

$$B_1 = p_2 - p_1 + \exp(2p_2 d)(p_2 + p_1), \qquad (6)$$

$$B_2 = p_2 \varepsilon_1 - p_1 \varepsilon_2 - \exp(2p_2 d)(p_1 \varepsilon_2 + p_2 \varepsilon_1).$$
(7)

Здесь переменные

$$p_i = \sqrt{k^2 - \frac{\omega^2}{c^2}\varepsilon_i}, \qquad i = 1, 2, 3$$
(8)

представляют собой поперечные волновые числа, описывающие распределение электромагнитного поля нерадиационных поляритонов вдоль оси *z*.

Поскольку поляритоны являются нерадиационными, то необходимо, чтобы выполнялись условия

Re
$$p_1 > 0$$
, Re $p_3 > 0$. (9)

Если $\varepsilon_2 = \varepsilon_3$, то в предельном случае $d \to \infty$ дисперсионное уравнение (3) совпадает с дисперсионным уравнением для поверхностных поляритонов в ДЭС, внедренной в однородную диэлектрическую среду с проницаемостью ε_2 [6,7].

3. Приведем результаты численного решения дисперсионного уравнения (3) с учетом диссипации в ДЭС ($\nu \neq 0$). Будем считать, что волновое число *k* является вещественной, а частота $\omega = \omega' + i\omega''$ — комплексной величиной. Для удобства численного решения дисперсионного уравнения (3) введем следующие безразмерные величины: $\xi' = \omega'/\Omega$, $\xi'' = \omega''/\Omega$, $\zeta = ck/\Omega$, $\chi = z\Omega/c$,

Puc. 2. Спектр $\xi'(\zeta)$ (I'-3') и затухание $\xi''(\zeta)$ (I''-3'') нерадиационных поляритонов в гетеропереходе GaAs/Al_xGa_{1-x}As в случае $\delta = 0.1$, $\Gamma = 0.1$ для различных значений N: I - 1; 2 - 5; 3 - 10. Штриховая линия 4 соответствует световой линии в GaAs ($\xi' = \zeta/\sqrt{\varepsilon_3}$). Штриховые линии $(I^\circ - 3^\circ)$ — дисперсионные кривые в отсутствие диссипации.

 $\delta = d\Omega/c$, $\Gamma = \nu/\Omega$. Все расчеты проведены для гетероперехода GaAs/Al_xGa_{1-x}As с $\varepsilon_2 = 12.0$ и $\varepsilon_3 = 12.9$. Предполагалось, что слой Al_xGa_{1-x}As (среда 2) граничит с воздухом/вакуумом с проницаемостью $\varepsilon_1 = 1.0$ (среда 1).

На рис. 2 приведены спектр $\xi'(\zeta)$ и затухание $\xi''(\zeta)$ $\delta = 0.1$, для трех значений фактора заполнения уровней Ландау *N*. Штриховая линия *4* соответствует световой линии и в отсутствие диссипации ($\Gamma = 0$) служит границей между областью радиационных и нерадиационных поляритонов. Дисперсионные кривые ($1^{\circ}-3^{\circ}$), соответствующие случаю отсутствия диссипации, для указанных значений *N* начинаются на световой линии *4*.

Из рис. 2 видно, что наличие диссипации в ДЭС приводит к расширению области существования нерадиационных поляритонов: они существуют при всех значениях ζ . Справа от световой линии 4 дисперсионные кривые слабо видоизменяются по сравнению с недиссипативным случаем. В этой области электромагнитное поле нерадиационных поляритонов экспоненциально спадает от границы ДЭС (z = 0), т.е. мы имеем дело с поверхностными поляритонами. По мере приближения к световой линии 4 дисперсионные кривые $\xi'(\zeta)$ отклоняются вверх от своих недиссипативных аналогов и продолжаются немонотонным образом вплоть до линии ординат $\zeta = 0$. В работах [6,7] отмечалось, что в окрестности циклотронного резонанса ($\xi \approx 1$) дисперсионные кривые пересекаются в первом приближении в одной и той же точке. Из рис. 2 видно, что учет диссипации в ДЭС приводит к появлению двух точек пересечения дисперсионных кривых: одна из них лежит слева от световой линии 4, а другая — справа от нее. При переходе через эти точки характер зависимости частоты ξ' нерадиационных поляритонов от N (при фиксированном значении ζ) меняется на противоположный. Так, слева от первой точки пересечения дисперсионных кривых, частота поляритонов ξ' растет с ростом N, в области волновых чисел ζ , лежащей между двумя точками пересечения дисперсионных кривых, частота поляритонов уменьшается с ростом N. Наконец, справа от второй точки пересечения дисперсионных кривых частота волн ξ' снова растет с ростом N. Отметим, что в области волновых чисел ζ , лежащей слева от первой точки пересечения дисперсионных кривых, на кривой $\xi'(\zeta)$ имеется участок, на котором $\partial \xi' / \partial \zeta > 0$. Величина этого участка возрастает с ростом N. Полагаем, что участок дисперсионной кривой с $\partial \xi' / \partial \zeta > 0$ связан с возникновением на границе z = d поверхностных поляритонов типа мод Брюстера. На возможность образования мод Брюстера ТМ-поляризации на границе раздела двух диссипативных сред, у которых вещественные части диэлектрических проницаемостей являются положительными, указывалось в работах [2,4]. Особенность нашего случая состоит в том, что поляризация рассматриваемых нами поверхностных поляритонов типа мод Брюстера является смешанной, а "привязывание" их к границе z = d происходит за счет диссипации в ДЭС, расположенном на границе z = 0. Из рис. 2 видно, что моды Брюстера на границе z = d образуются, если $\zeta \approx \sqrt{\varepsilon_1} = 1$.

На рис. З показано изменение спектра $\xi'(\zeta)$ и затухания $\xi''(\zeta)$ нерадиационных поляритонов для различных значений Г. Из рис. З следует, что для малых значений Г ($\Gamma = 0.01-0.03$) дисперсионные кривые $\xi'(\zeta)$ имеют точку начала спектра $p'_3 = 0$, лежащую слева от световой линии 5. В этой точке электромагнитное поле нерадиационных поляритонов становится делокализованным, а их затухание обращается в нуль: $\xi'' = 0$. При дальнейшем увеличении Г точка начала спектра нерадиационных поляритонов смещается влево и при $\Gamma = 0.05$ она достигает оси ординат $\zeta = 0$. В точке $\zeta = 0$ мы имеем поверхностные колебания электромагнитного поля, которые циркулярно поляризованы в плоскости ДЭС ($E_{x2}/E_{y2} = i$, $H_{x2}/H_{y2} = i$) и частота которых зависит от величины δ .

Рассмотрим теперь влияние толщины слоя Al_rGa_{1-r}As на спектр и затухание нерадиационных поляритонов. На рис. 4 изображен спектр $\xi'(\zeta)$ и затухание $\xi''(\zeta)$ для различных значений б. Из рис. 4 видно, что на дисперсионных кривых $\xi'(\zeta)$ может существовать несколько участков с положительной производной $\partial \xi' / \partial \zeta$. При малых значениях δ ($\delta = 0.1$) на кривой l' имеется два таких участка: один лежит слева от световой линии 5, а другой — справа от нее. Первый — связан с возникновением моды Брюстера на границе z = d, а второй — с возникновением поверхностного поляритона на границе z = 0. С увеличением δ на дисперсионных кривых $\xi'(\zeta)$ слева от световой линии 5 возникает два участка с положительной производной $\partial \xi' / \partial \zeta$ (кривые 2' и 3' на рис. 4). Первый, как уже отмечалось связан с возникновением моды Брюстера на границе z = d, а второй — с возникновением объемного поляритона первого порядка. У этого объемного поляритона компонента среднего потока энергии $\mathbf{S}(z) = \frac{c}{8\pi} \operatorname{Re}[\mathbf{EH}^*]$ вдоль оси *x* имеет один максимум внутри слоя Al_xGa_{1-x}As. При дальнейшем увеличении δ на дисперсионной кривой $\xi'(\zeta)$ слева от световой линии 5 появляется третий участок с положительной производной $\partial \xi' / \partial \zeta$ (дисперсионная кривая 4'). Этот участок связан с возникновением объемного поляритона второго порядка, для которого зависимость $S_x(z)$ имеет два максимума внутри слоя $Al_xGa_{1-x}As$.

На рис. 5 изображена зависимость $S_x(\chi)/S_x(0)$ ($\chi = z\Omega/c$ — безразмерная координата в *z*-направлении) в случае N = 5, $\Gamma = 0.1$, $\delta = 1.5$ для различных значений ζ . Для малых значений ζ ($\zeta = 0.5$, кривая *I*) распределение $S_x(\chi)$ по толщине слоя является практически однородным. При этом доля потока энергии, переносимая в среде *I* в *x*-направлении немного больше, чем в среде *3*. Перенос энергии в среде *I* существенно увеличивается в окрестности точки $\zeta = 1$. Кривая *2* на рис. 5 приведена для $\zeta = 0.99$, которая соответствует первой точке максимума на дисперсионной кривой 4, изображенной на рис. 4. Этот случай соответствует возбуждению моды Брюстера на границе z = d. При дальнейшем увеличении ζ доля потока энергии в *х*-направлении в среде 1 уменьшается, а в слое $Al_xGa_{1-x}As$ (среда 2) возрастает. При $\zeta = 1.5$ нерадиационные поляритоны имеют два максимума на зависимости $S_x(\chi)$ внутри слоя $Al_xGa_{1-x}As$ (кривая 3). Эта ситуация соответствует возбуждению в гетеропереходе GaAs/Al_xGa_{1-x}As объемного поляритона второго порядка. Дальнейшее увеличение ζ приводит к постепенной трансформации объемного поляритона второго порядка в объемный поляритон первого порядка ($\zeta = 3.0$, кривая 4). Для объемного поляритона первого порядка зависимость $S_x(\chi)$ внутри слоя Al_xGa_{1-x}As имеет лишь один максимум. Отметим, что возникновение объемных поляритонов первого и второго порядков приводит к появлению локальных минимумов на зависимостях $\xi''(\zeta)$ (пунктирные кривые 2''-4'' на рис. 4). Это связано с тем, что доля потока энергии, переносимая объемными поляритонами в х-направлении внутри слоя Al_xGa_{1-x}As больше, чем у его границы *z* = 0, которая диссипирует энергию волн. Наконец если ζ лежит справа от световой линии ($\zeta = 4$, кривая 5) в гетеропереходе GaAs/Al_xGa_{1-x}As возникают поверхностные поляритоны, имеющие максимум потока энергии на границе z = 0. Затухание поверхностных поляритонов с увеличением ζ монотонно возрастает и стремится к своему максимальному значению $\xi'' = -\Gamma$.

Интересно проанализировать зависимость частоты и затухания поверхностных электромагнитных колебаний $(\zeta = 0)$ от величины δ . На рис. 6 изображены зависимости $\xi'(\delta)$ и $\xi''(\delta)$ в случае $\zeta = 0, N = 5$ для различных значений Г. Если $\delta \to 0$ мы имеем ДЭС, граничащую со средами с диэлектрическими проницаемостями ε_1 и ε_3 . При этом из уравнения (3) следует, что $\xi' = 1$, а $\xi'' = -\Gamma + 4\alpha N/(\sqrt{\varepsilon_1} + \sqrt{\varepsilon_3})$. Поскольку ξ'' должна быть отрицательной величиной, то поверхностные электромагнитные колебания существуют, если $\Gamma > 4\alpha N / (\sqrt{\varepsilon_1} + \sqrt{\varepsilon_3})$. При конечных значениях δ зависимости $\xi'(\delta)$ и $\xi''(\delta)$ являются осциллирующими функциями, амплитуда которых убывает с увеличением δ . Наконец, при $\delta \to \infty$ мы имеем ДЭС, граничащую со средами с диэлектрическими проницаемостями ε_2 и ε_3 . Для этого случая мы имеем: $\xi' = 1$, $\xi'' = -\Gamma + 4\alpha N / (\sqrt{\varepsilon_2} + \sqrt{\varepsilon_3})$. Поскольку $\varepsilon_2 > \varepsilon_1$, то условия возбуждения поверхностных электромагнитных колебаний в случае $\delta \to \infty$ являются менее жесткими, чем в случае $\delta \rightarrow 0$ (при одном и том же значении *N*). Таким образом, если величина Г лежит в интервале

$$\frac{4\alpha N}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_3}} > \Gamma > \frac{4\alpha N}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_3}},\tag{10}$$

то существует такое критическое значение δ , меньше которого поверхностные электромагнитные колебания не возникают.

Рис. 3. Спектр $\xi'(\zeta)$ (сплошные кривые l'-4') и затухание $\xi''(\zeta)$ (пунктирные кривые l''-4'') нерадиационных поляритонов в гетеропереходе GaAs/Al_xGa_{1-x}As в случае $\delta = 0.1$, N = 5 для различных значений Г: l = 0.01; 2 = 0.03; 3 = 0.05; 4 = 0.1. Штриховая линия 5 соответствует световой линии в GaAs ($\xi' = \zeta/\sqrt{\varepsilon_3}$).

Рис. 4. Спектр $\xi'(\zeta)$ (сплошные кривые l'-4') и затухание $\xi''(\zeta)$ (пунктирные кривые l''-4'') нерадиационных поляритонов в гетеропереходе GaAs/Al_xGa_{1-x}As в случае $\Gamma = 0.1$, N = 5 для различных значений δ : l = 0.1; 2 = 0.5; 3 = 1.0; 4 = 1.5. Штриховая линия 5 соответствует световой линии в GaAs ($\xi' = \zeta/\sqrt{\varepsilon_3}$).

Рис. 5. Зависимости $S_x(\chi)/S_x(0)$ в случае N = 5, $\Gamma = 0.1$, $\delta = 1.5$ для различных значений ζ : 1 - 0.5, 2 - 0.99, 3 - 1.5, 4 - 3.0, 5 - 4.0.

Рис. 6. Зависимости $\xi'(\delta)$ (сплошные кривые l'-3') и $\xi''(\delta)$ (пунктирные кривые l''-3'') для поверхностных электромагнитных колебаний ($\zeta = 0$) в случае N = 5 при различных значениях Γ : 1 - 0.05; 2 - 0.1; 3 - 0.2.

Таким образом, в гетеропереходах GaAs/Al_xGa_{1-x}As могут существовать различные типы быстрых и медленных нерадиационных поляритонов. Они могут быть использованы для бесконтактной диагностики параметров гетероперехода: определения величины фактора заполнения уровней Ландау, толщины слоя $Al_xGa_{1-x}As$ и частоты релаксации импульса электронов. Кроме того, в силу скачкообразного изменения свойств нерадиационных поляритонов, их можно использовать для создания различных устройств полупроводниковой наноэлектроники.

В заключение отметим, что экспериментально нерадиационные поляритоны в полупроводниках могут быть исследованы с помощью различных методов. Например, с помощью метода нарушенного полного внутреннего отражения [1,2] и неупругого рассеяния света [11]. Последний метод позволяет возбуждать медленные поверхностные поляритоны с волновыми числами $k \sim 2 \cdot 10^5$ сm⁻¹. При таких значениях k фазовая скорость поверхностных поляритонов будет порядка 0.01 с.

Список литературы

- Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. Наука, М. (1985). 525 с.
- [2] Electromagnetic Surface Modes / Ed. by A.D. Boardman. Wiley, N.Y. (1982). 776 p.
- [3] T. Ando, B. Fowler, F. Stern. Rev. Mod. Phys. 54, 437 (1982).
- [4] Р.С. Бразис. Литов. физ. сб. 21, 4, 73 (1981).
- [5] Yu.A. Kosevich, A.M. Kosevich, J.C. Granada. Phys. Lett. 127A, 52 (1988).
- [6] I.E. Aronov, N.N. Beletskii. J. Phys.: Condens. Matter. 8, 27, 4919 (1996).
- [7] I.E. Aronov, N.N. Beletskii, G.P. Berman, A.R. Bishop. Phys. Rev. B56, 16, 10392 (1997).
- [8] N.C. Constantinou, M.G. Cottam. J. Phys.: Condens. Matter. 19, 5, 739 (1986).
- [9] R.F. Wallis, J.J. Quinn. Phys. Rev. B38, 6, 4205 (1988).
- [10] M. Nakayama. J. Phys. Soc. Jpn. 36, 2, 393 (1974).
- [11] L.L. Sohn, A. Pinczuk, B.S. Dennis, L.N. Pfeiffer, K.W. West. Solid State Commun. 93, 11, 897 (1995).