Магнитная структура монокристалла $RbDy(WO_4)_2$

© В.П. Дьяконов, Э.Е. Зубов, А.А. Павлюк*, М. Боровец**, Г. Шимчак**

Донецкий физико-технический институт Академии наук Украины,

340114 Донецк, Украина * Институт неорганической химии Российской академии наук,

630095 Новосибирск, Россия

** Институт физики Польской академии наук,

02-668 Варшава, Польша

E-mail: dyakonov@host.dipt.donetsk.ua

(Поступила в Редакцию 29 июня 1998 г. В окончательной редакции 28 сентября 1998 г.)

> Представлены результаты измерений температурных и полевых зависимостей намагниченности монокристалла RbDy(WO₄)₂, измеренные в температурном интервале от 4.2 до 50 K и в магнитных полях вплоть до 1.6 T. Оценена энергия обменных и диполь-дипольных взаимодействий. Определена магнитная структура основного состояния.

Рубидий-диспрозиевый $RbDy(WO_4)_2$ вольфрамат является представителем семейства щелочных (М) редкоземельных (R) двойных вольфраматов $M^+R^{3+}(WO_4)_2$. В настоящее время известна только одна работа, посвященная исследованию $RbDy(WO_4)_2$. На основе измерений теплоемкости установлен антиферромагнитный (АФМ) фазовый переход с температурой Нееля $T_N = 0.818 \,\mathrm{K}$ [1]. Низкая симметрия кристаллического окружения Dy^{3+} предопределяет достаточно иона сильную анизотропию магнитных свойств $RbDy(WO_4)_2$. Принимая во внимание низкую температуру магнитного упорядочения, можно предположить, что роль дипольдипольных взаимодействий будет весьма существенной в установлении дальнего порядка. Магнитные исследования RbDy(WO₄)₂ также стимулируются желанием установить магнитную структуру основного состояния.

В данной работе представлены результаты измерений намагниченности как функции температуры и величины магнитного поля в монокристалле RbDy(WO₄)₂.

1. Образцы и эксперимент

Внешний вид кристалла RbDy(WO₄)₂ показан на рис. 1. Кристаллографические $(a, b \ u \ c)$ и зафиксированные магнитные $(x, y \ u \ z)$ оси указаны на рисунке.

Кристаллы рубидий-диспрозиевого вольфрамата имеют при комнатной температуре моноклинную α -КҮ(WO₄)₂ структуру C_{2h}^6 [2,3]. Параметры решетки равны a = 8.14A, b = 10.45A и c = 7.57A с моноклинным углом $\beta = 94^\circ$. Ион Dy³⁺ имеет локальную симметрию C_2 . Элементарная ячейка содержит ионы диспрозия в двух цепочках, параллельных оси a. Цепочки сдвинуты относительно друг друга на половину периода вдоль осей b и c.

Магнитные измерения монокристалла $RbDy(WO_4)_2$ проводились на вибрационном магнитометре (PAR Model 450) в температурном интервале 4.2-50 K и в магнитных полях до 1.6 Т. Направление приложенного поля выбиралось в *ab*, *bc* и *ac* плоскостях. Размеры образцов имели величины около $1.2 \times 1.4 \times 5$ мм. Образцы ориентировались вдоль одного из кристаллографических направлений.

2. Экспериментальные результаты

Угловая зависимость намагниченности монокристалла RbDy(WO₄)₂ показывает, что только кристаллографическая ось *b* совпадает с одним из главных направлений тензора восприимчивости (ось *y*). Два других направления (оси *z* и *x*) лежат в плоскости *ac* и отклонены на угол $\varphi = 12^{\circ}$ от кристаллографических осей *c* и *a* соответственно (рис. 1).

Зависимости намагниченности M от магнитного поля и температуры показаны на рис. 2, *a*, *b*. Магнитное насыщение при 4.2 К не достигнуто вплоть до H = 1.6 Т. Как видно из рис. 2, *a*, отличие намагниченностей вдоль направлений *c* и *b* в плоскости *bc* несущественно. Сильная анизотропия намагниченности наблюдалась в

Рис. 1. Внешний вид кристалла RbDy(WO₄)₂: *a*, *b*, *c* — кристаллографические оси; *x*, *y*, *z* — магнитные оси, $\beta = 94^{\circ}$ и $\varphi = 12^{\circ}$.

Puc. 2. Полевая зависимость намагниченности как функция (a) угла φ между осью c и направлением H в плоскости bc при T = 4.2 K: $\varphi = 0^{\circ} - (1)$; $45^{\circ} - (2)$; $90^{\circ} - (3)$ (b) температуры (поле в zx плоскости): $H \parallel z - 4.2 \text{ K} - (1)$; 4.9 K - (2); 9.5 K - (3); $H \parallel x - 4.2 \text{ K} - (4)$.

кристаллографических плоскостях *ac* и *ab*. Температурные зависимости намагниченности вдоль осей *z* и *x* в плоскости *ac*, измеренные в магнитном поле, представлены на рис. 3, *a*, *b*. Функция M(T) зависит от ориентации и величины магнитного поля. Компонента M_x намагниченности более чем на порядок меньше величины M_z (рис. 3, *a*). Как видно из вставки к рис. 3, *a*, вблизи температур 6 и 16 К зависимость 1/M(T) имеет точки перегиба. На кривых M(T) точки перегиба менее выражены. Зависимости 1/M(T) линейны по температуре и имеют различные наклоны выше и ниже точек перегиба.

Рис. 3. Температурные зависимости намагниченности (a) — измеренные при ориентации поля вдоль осей z - (1) и x - (2) в магнитном поле H = 0.5 Т. (На вставке — температурная зависимость обратной величины намагниченности вдоль оси z). (b) — измеренные при ориентации поля вдоль оси z в различных магнитных полях: H = 0.5 Т. (1), 1.0 Т - (2), 1.5 Т - (3).

Поскольку измерения выполнены на длинных и тонких образцах с малым размагничивающим фактором, точка пересечения $1/M_i(T)$ зависимости с температурной осью определяет температуру Кюри-Вейсса ϑ_i . По аналогии с KDy(WO₄)₂ [4], предполагается, что установленные особенности зависимостей 1/M(T) монокристалла

 $RbDy(WO_4)_2$ связаны со структурным фазовым переходом (СФТ).

Было установлено, что магнитное поле сильно влияет на зависимость 1/M(T). Это, естественно, отражается на величине парамагнитной температуры ϑ . Известно, что температура Кюри-Вейсса не зависит от магнитного

Таблица 1. Температура Кюри ϑ , *g*-фактор и константа Кюри *C*, полученные из экспериментальных данных, при приложении поля вдоль основных кристаллографических направлений

Направление	$T_{spt2} > T > T_{spt1}$			$T < T_{spt1}$		
		C, cm ³ /mole	gi		<i>C</i> , cm ³ /mole	g_i
Вдоль оси <i>а</i> (плоскость <i>ab</i>) Влоль оси <i>с</i>				-2	1.5	4
(плоскость bc)	-4.7	19.4	14.4	-1.7	14.1	12.3
Вдоль оси <i>b</i> (плоскость <i>bc</i>) Вдоль оси <i>z</i>	-4.3	19.3	14.4	-1.5	14.1	12.2
(плоскость ас)	-4.7	20.6	14.8	-0.7	13.4	11.9

поля. В данном случае влияние магнитного поля на зависимость 1/M(T) и значение величины ϑ , очевидно, отражает изменения в электронном спектре основного состояния ионов Dy³⁺ при СПТ в магнитном поле.

Восприимчивость может быть приближенно описана законом Кюри-Вейсса

$$M_i/H = \chi_i = \frac{C_i}{T - \vartheta_i},$$

где $C_i = N_A (\mu_B g_i)^2 S(S+1)/3k$, N_A — число Авогадро, μ_B — магнетон Бора, S — эффективный спин, равный 1/2, k — постоянная Больцмана.

Из анализа экспериментальных данных вычислены параметры C_i , ϑ_i и g_i для RbDy(WO₄)₂ (табл. 1). При анализе рассматривался температурный интервал, в котором влиянием возбужденных уровней можно пренебречь. Согласно табл. 1, *g*-факторы вдоль главных кристалллографических направлений выше и ниже T_{sp1} отличаются меньше, чем парамагнитные температуры ϑ_2 и ϑ_1 , что, по-видимому, обусловлено изменением параметров обмена при структурных переходах.

Также установлена зависимость температуры Кюри-Вейсса от магнитного поля. С ростом магнитного поля парамагнитная температура ϑ_2 увеличивается. По-видимому, причиной изменения ϑ_2 являются магнитострикционные эффекты в исследуемом редкоземельном магнетике.

Проведем оценку параметров обменного взаимодействия вдоль трех различных направлений. Так, выражение для парамагнитной температуры ϑ_{α} в произвольном направлении α имеет вид

$$\vartheta_{\alpha} = -\frac{-2S(S+1)}{3k} \Big(J_{\alpha}^0 + E_{\alpha}^0 \Big), \tag{1}$$

где $J_{\alpha}^{0}/k = zJ_{\alpha}/k$, z = 6 — число ближайших соседей, J_{α} — параметр обменного взаимодействия между парой магнитных ионов в направлении α ; $E_{\alpha}^{0} = L_{\alpha 1}/k + L_{\alpha 2}/k$ — вклад диполь-дипольного взаимодействия, $L_{\alpha 1}/k$ — вклад магнитного дипольного взаимодействия внутри сферы Лоренца радиусом R = 200 А. Решеточные суммы $L_{\alpha 1}$ имеют следующие величины: $L_{a1}/k = -0.209$ K, $L_{b1}/k = 0.192$ K, $L_{c1}/k = 1.47$ K ($T > T_{spt1}$);

$$L_{a1}/k = -0.128 \text{ K}, \ L_{b1}/k = 0.138 \text{ K}, \ L_{c1}/k = 1.07 \text{ K} \ (T < T_{spt1}).$$

 $L_{\alpha 2}$ есть вклад магнитного дипольного взаимодействия, связанный с лоренцевским членом и размагничивающим полем

$$L_{\alpha 2}/k = (-4\Pi/3 + 4\Pi N)C_{\alpha N},$$
 (2)

где $C_{\alpha N} = 4(m_B g_{\alpha})^2 / kabc$, N = 0.079 — размагничивающий фактор.

Выполняя суммирование, получаем следующие значения констант вдоль основных кристаллографических направлений:

$$L_{a2}/k = -0.335 \text{ K}, L_{b2}/k = -2.67 \text{ K}, L_{c2}/k = -2.67 \text{ K} (T > T_{spt1});$$

$$L_{a1}/k = -0.206 \text{ K}, L_{b1}/k = -1.92 \text{ K}, L_{c1}/k = -1.95 \text{ K} (T < T_{spt1}).$$

Суммарный вкдад E_{α}^{0} диполь-дипольного взаимодействия в значение величины парамагнитной температуры ϑ_{α} имеет вид

$$E_a^0/k = -0.54 \text{ K}, \ E_b^0/k = -2.48 \text{ K}, \ E_c^0/k = -1.2 \text{ K} \ (T > T_{spt1});$$

$$E_a^0/k = -0.33 \text{ K}, \ E_b^0/k = -1.78 \text{ K}, \ E_c^0/k = -0.87 \text{ K} \ (T < T_{spt1}).$$

Считая, что параметры обмена для всех ближайших соседей равны по величине, на основе уравнения (1) и данных ϑ_{α} из эксперимента вычисляем обменный параметр J_{α}^{0} . Результаты представлены в табл. 2.

Из представленных данных видно, что вклад дипольдипольных взаимодействий в спин-спиновые при $T > T_{spt1}$ незначителен. При $T < T_{spt1}$ величина дипольдипольной энергии максимальна вдоль *b*-направления (перпендикулярно плоскостям DyW₂O₈) и минимальна вдоль *a*-направления (вдоль цепочек ионов Dy³⁺). Несмотря на то, что при $T > T_{spt1}$ обмен вдоль оси *a* максимален, его роль в формировании дальнего порядка снижается при $T < T_{spt1}$, поскольку в этом случае вклад диполь-дипольных взаимодействий становится существенным.

На основании данных табл. 2 можно сказать, что обмен при $T < T_{spt1}$ практически изотропен.

Таблица 2. Параметр обменного взаимодействия J_{α} вдоль основных кристаллографических направлений

	$-J_a^0/k$	$-J_b^0$	$-J_c^0$
$T > T_{spt1}$	17.7	11.1	10.6
$T < T_{spt1}$	4.3	4.8	4.3

Теперь определим магнитную структуру основного состояния в соединении RbDy(WO₄)₂ при низких температурах ($T < T_{spt1}$). Энергия основного состояния различных магнитных структур решеток Браве с одним магнитоактивным ионом была оценена с помощью методики, развитой в работе [5].

Для расчета использовалось обычное выражение для дипольной энергии

$$E_{dip} = \sum_{ij} \left[\frac{\mathbf{m}_i \mathbf{m}_j}{r_{ij}^3} - 3 \frac{(\mathbf{m}_i \mathbf{r}_{ij})(\mathbf{m}_j \mathbf{r}_{ij})}{r_{ij}^5} \right]$$

где m_i — магнитный момент, который выражается через спиновые компоненты S_i^{α} посредством соотношения

$$m_i^{\alpha} = \mu_b g_{\alpha} S_i^{\alpha} \qquad (\alpha = x, y, z),$$

 \mathbf{r}_{ij} — радиус-вектор, соединяющий *i*-й и *j*-й узлы.

При вычислениях использовались значения *g*-факторов, приведенные в табл. 1 при $T < T_{spt1}$.

Установление основного состояния предполагает поиск магнитной структуры, имеющей минимальную энергию для момента **m**_i в поле окружающих моментов, связанных диполь-дипольными и обменными взаимодействиями.

Численный анализ решеточных сумм на основе теории [5] проведен для сферы радиусом R = 200 А. Получено, что минимальную энергию имеет АФМ структура с шахматным порядком. Для трех направлений вектора антиферромагнетизма имеем следующие значения энергии E_{α}^{0} : $E_{a}^{0} = -4.1$ K, $E_{b}^{0} = -5.9$ K, $E_{c}^{0} = -5$ K. Таким образом, магнитная структура кристалла RbDy(WO₄)₂ представляет 3D систему антиферромагнитно упорядоченных магнитных моментов ионов Dy³⁺, направленных коллинеарно оси b.

Таким образом, в работе исследованы температурная и полевая зависимости намагниченности монокристалла $RbDy(WO_4)_2$ в широком интервале температур (T = 4.2 - 50 K) и магнитных полей (до 1.6 T). Установлена сильная анизотропия намагниченности в аси *аb*-плоскостях. Используя угловые зависимости M(H), определены магнитные оси. Точки перегиба на зависимости 1/M(T) связаны с наличием двух структурных фазовых переходов в исследуемом кристалле. Изменение температуры Кюри, а также g-факторов при структурных фазовых переходах указывает на сильную корреляцию магнитных свойств с кристаллической и электронной структурами. Оценены обменная и диполь-дипольная энергии. Показано, что обменные взаимодействия между ионами Dy³⁺ вдоль основных кристаллографических направлений являются антиферромагнитными и практически изотропны. Диполь-дипольные взаимодействия вдоль оси b вносят максимальный вклад в суммарную энергию спин-спиновых взаимодействий. На основе анализа экспериментальных данных и результатов расчета диполь-дипольных взаимодействий установлена магнитная структура основного состояния монокристалла RbDy(WO₄)₂. Она представляет собой систему A Φ M упорядоченных ионов Dy³⁺ с вектором антиферромагнетизма вдоль оси *b*.

Авторы М.Т. Borowiec и Н. Szymczak благодарят Польский государственный комитет по науке (KBN) за частичную поддержку данной работы (project N 2PO3807108).

Список литературы

- M.T. Borowiec, V. Dyakonov, A. Jedrzejczak, V. Markovich, A. Pavlyuk, H. Szymczak, E. Zubov, M. Zaleski. J. Low Temp. Phys. 110, 1003 (1998).
- [2] V.K. Trunov, V.K. Rybakov. J. Inorg. Chem. 19, 636 (1974).
- [3] P.V. Klevtsov, R.F. Klevtsova. J. Struct. Chem. 18, 339 (1978).
- [4] M.T. Borowiec, V. Dyakonov, E. Zubov, E. Khatsko, H. Szymczak. J. Physique I 7, 1, (1997).
- [5] T.H. Niemeyer. Physica 57, 281 (1972).