Влияние некристаллографической магнитной анизотропии на процессы перемагничивания мультислойных магнитных пленок

© М.И. Куркин, Д.З. Хусаинов

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия E-mail: theormag@ifm.e-burg.su

(Поступила в Редакцию 2 июня 1998 г. В окончательной редакции 14 сентября 1998 г.)

> Исследована намагниченность слоистой системы, состоящей из двух обменных-связанных легкоосных ферромагнитных слоев, разделенных немагнитной прослойкой и имеющих взаимно перпендикулярные оси анизотропии. Показано, что намагниченность такой системы может испытывать скачкообразное уменьшение с ростом магнитного поля. Полевая зависимость намагниченности имеет бифуркационную точку. В зависимости от угла ориентации магнитного поля возможны скачки в ориентации намагниченности, превышающие 90°.

В статье обсуждаются магнитные свойства специальных магнитных пленок, в которых магнитные слои, вопервых, разделены неферромагнитными (Cu, Cr. . .) прослойками и, во-вторых, толщины прослоек достаточно малы, так что обменное взаимодействие соседних слоев превышает взаимодействия, ответственные за магнитную анизотропию [1], т.е.

$$H_E > H_A, \tag{1}$$

где H_E — эффективное поле межслоевого обменного взаимодействия, H_A — поле магнитной анизотропии. В этой статье считается, что магнитная анизотропия имеет некристаллографическую природу, поскольку влияние кристаллографической анизотропии изучалось ранее [2,3]. Природа некристаллографической анизотропии может быть связана с влиянием подложки или кинетикой роста отдельных слоев, и для слабоанизотропных магнетиков ее вклад иногда оказывается даже преобладающим [4].

Одна из особенностей некристаллографической магнитной анизотропии состоит в том, что имеется возможность заданным образом ориентировать оси легкого намагничивания для разных слоев пленки. В случае слабой обменной связи этих слоев, $H_E \ll H_A$, сумарный момент таких пленок определяется конкуренцией двух факторов — поля магнитной анизотропии H_A и внешнего магнитного поля H. В этом случае процессы намагничивания пленок описываются монотонно возрастающими кривыми [4].

В рассматриваемом случае $H_E > H_A$ результирующий момент пленки формируется в условиях конкуренции трех полей — H_A , H и H_E . Их сочетание имеет гораздо больше вариантов, чем в случае двух факторов, поэтому при определенных условиях на кривых намагничивания могут появиться падающие участки. Им соответствует уменьшение проекции намагниченности M на направление магнитного поля H при увеличении H (как в диамагнитных веществах).

На возможность появления падающих участков на кривых намагничивания слабых ферромагнетиков обращалось внимание в книге [5]. Для этого взаимодействие Дзялошинского, ответственное за слабый ферромагнетизм, должно одновременно приводить к магнитной анизотропии, взяв на себя роль третьего фактора в конкурентной борьбе между H и полем антиферромагнитного обмена H_E за формирование результирующей намагниченности.

1. Исходные соотношения

Простейшая система, для которой возможен падающий участок на кривой намагничивания, состоит из двух ферромагнитных слоев с намагниченностями M_1 и M_2 , разделенных неферромагнитной прослойкой. Между слоями действует антиферромагнитное взаимодействие

$$F_{\rm ex} = H_E(\mathbf{M}_1 \mathbf{M}_2) / M_0, \qquad (2)$$

где H_E — эффективное обменное поле $(H_E > 0)$, $M_0 = |\mathbf{M}_1| = |\mathbf{M}_2|$. В каждом слое имеется одноосная магнитная анизотропия с осью легкого намагничивания. Направления осей задаются единичными векторами \mathbf{c}_1 и \mathbf{c}_2 ($|\mathbf{c}_1| = |\mathbf{c}_2| = 1$).

$$F_A = -H_A (\mathbf{M}_0 \mathbf{c}_1)^2 / M_0 - H_A (\mathbf{M}_0 \mathbf{c}_2)^2 / M_0, \qquad (3)$$

где — эффективное поле магнитной анизотропии. При $\mathbf{c}_1 \parallel \mathbf{c}_2$ рассматриваемая пленка по своим магнитным свойствам не отличается от хорошо изученного одноосного антиферромагнетика [5]. Особенности типа падающих участков на кривых намагничивания появляются при разориентации осей \mathbf{c}_1 и \mathbf{c}_2 . Здесь ограничимся случаем $\mathbf{c}_1 \perp \mathbf{c}_2$, когда эти особенности максимальны.

Для описания процессов намагничивания и перемагничивания рассматриваемой трехслойной пленки необходимо учесть взаимодействие с внешним магнитным полем *H*, которое описывается выражением

$$F_z = -(\mathbf{M}_1 + \mathbf{M}_2)\mathbf{H}.$$
 (4)

Хотя авторы считают, что вектора c_1 , c_2 и H лежат в плоскости пленки, тем не менее возможны условия

Рис. 1. Взаимная ориентация внешнего магнитного поля **H**, намагниченностей M_1 и M_2 , осей легкого намагничивания c_1 и c_2 .

Рис. 2. Возможные ориентации векторов суммарной намагниченности \mathbf{m}_1 \mathbf{m}_2 , \mathbf{m}_3 и \mathbf{m}_4 в нулевом поле. Штриховыми линиями изображены вектора намагниченности \mathbf{M}_1 и \mathbf{M}_2 , дающие в сумме вектор $\mathbf{m}_1 = \mathbf{M}_1 + \mathbf{M}_2$.

(при намагничивании вдоль трудных направлений), когда вектора \mathbf{M}_1 и \mathbf{M}_2 могут выйти из этой плоскости. Мы не учитываем таких возможностей, полагая, что вектора \mathbf{M}_1 и \mathbf{M}_2 удерживаются в плоскости пленки сильным размагничивающим полем $4\pi M_0 \gg H_E$.

Равновесные ориентации магнитных моментов M_1 и M_2 задаются углами θ и φ (рис. 1), которые находятся из условий минимума полной энергии

$$F = F_{\rm ex} + F_A + F_z. \tag{5}$$

С учетом (2)-(4) эти условия имеют вид

$$\partial F / \partial \theta = -H_E \sin \theta - \frac{1}{2} H_A \sin 2(\theta - \varphi) -H \sin(\varphi_H + \varphi - \theta) = 0, \qquad (6)$$

$$\frac{\partial F}{\partial \varphi} = \frac{1}{2} H_A \left[\sin 2\varphi + \sin 2(\theta - \varphi) \right] \\ + H \left[\sin(\varphi_H + \varphi) + \sin(\varphi_H + \varphi - \theta) \right].$$
(7)

При H = 0 минимуму F соответствуют четыре корня системы уравнений (6), (7)

$$\varphi_{1,2} = (\pm \pi/4 - \delta\theta/2), \quad \varphi_{3,4} = \pm (3\pi/4 + \delta\theta/2),$$
$$\theta = \pi - \delta\theta,$$
$$\operatorname{tg}(\delta\theta) = H_A/2H_E. \tag{8}$$

Они описывают скошенные структуры M_1 и M_2 с результирующим моментом

$$m = 2M_0 \sin(\delta\theta/2) = M_0 H_A/2H_E, \qquad (9)$$

который формируется в результате конкуренции взаимодействий F_{ex} (2) и F_A (3). Ориентации векторов \mathbf{m}_1 , \mathbf{m}_2 , \mathbf{m}_3 и \mathbf{m}_4 , соответствующих четырем корням уравнения (8), показаны на рис. 2. Штриховыми линиями изображены вектора \mathbf{M}_1 и \mathbf{M}_2 , которые в сумме дают вектор $\mathbf{m}_1 = \mathbf{M}_1 + \mathbf{M}_2$. Для трех других векторов (\mathbf{m}_2 , \mathbf{m}_3 и \mathbf{m}_4) соответствующие ориентации \mathbf{M}_1 и \mathbf{M}_2 непоказаны, чтобы не загромождать чертеж.

Вторым эффектом, обусловленным конкуренцией $F_{\rm ex}$ (2) и F_A (3), является ослабление эффективного поля магнитной анизотропии $F_A^{\rm eff}$, действующего на вектора *m* (9), по сравнению с полем F_A , действующим на \mathbf{M}_1 и \mathbf{M}_2 . Чтобы вычислить поле $F_A^{\rm eff}$, нужно выразить угол θ через φ , используя (6) при H = 0, и подставить полученные выражения в (5). При $H_A \ll H_E$ в наинизшем приближении по отношению H_A/H_E такая подстановка дает

$$F(\varphi) = -H_E M_0 - H_A M_0 / 2 - M_0 (H_A^2 / 8H_E) \sin^2(2\varphi).$$
(10)

Последнее слагаемое в (10) описывает эффективную магнитную анизотропию рассматриваемой пленки. Оно периодично по φ с периодом $\pi/2$, (а не π , как при других ориентациях \mathbf{c}_1 и \mathbf{c}_2) и характеризуется эффективным полем

$$H_A^{\text{eff}} = H_A^2 / 2H_E, \tag{11}$$

которое в $H_A/2H_E$ раз меньше поля, определяющего момент *m* (9).

2. Кривые намагничивания

Наличие четырех корней уравнений (6), (7) при H = 0 означает, что в рассматриваемой пленке может существовать доменная структура с доменами четырех типов. Однако, как будет показано далее, пленка может быть переведена в монодоменное состояние, если ее намагнитить до насыщения вдоль одного из векторов *m* (рис. 2). Процессы перемагничивания такой монодоменной пленки и будут рассмотрены в этом разделе.

Они описываются решениями уравнений (6), (7) при $H \neq 0$. Вид этих решений существенно зависит от ориентации H относительно оси c_1 (рис. 1). На рис. 3 приведены кривые перемагничивания, соответствующие значениям угла $\varphi_H = \pi/4$ (сплошная линия)

Рис. 3. Зависимость проекции намагничивания на магнитное поле от его величины (намагниченность выражена в единицах магнитного момента $2M_0$, а поле — в единицах H_E) в случае, когда поле имеет ориентацию $\varphi_H = \pi/4$, $-\pi/4$, а параметр анизотропии $\frac{H_A}{H_E} = 0.6$. Сплошной участок кривой соответствует ориентации поля под углом $\varphi_H = \pi/4$, в случае $\varphi_H = -\pi/4$ добавляется пунктирный участок, при условии, что намагничивание образца начинается с полей $H < H_3$.

и $\varphi = -\pi/4$ (пунктир). Характерными этих кривых являются следующие особенности.

1) Наличие точек самопересечения 1 и 1': это означает, что существуют два развличных состояния, в которых вектора $\mathbf{m}(H) = \mathbf{M}_1 + \mathbf{M}_2$ оказываются одинаковыми. В одном из них вектора \mathbf{M}_1 и \mathbf{M}_2 , ориентированы вдоль своих легких осей $\mathbf{M}_1 \parallel \mathbf{c}_1$ и $\mathbf{M}_2 \parallel \mathbf{c}_2$, что соответствует минимуму F_A (3), а во втором — вдоль трудных осей $\mathbf{M}_1 \perp \mathbf{c}_1$ и $\mathbf{M}_2 \perp \mathbf{c}_2$, что соответствует максимуму F_A . В обоих случаях магнитная анизотропия не влияет на величину момента *m*, а по отношению к двум другим взаимодействиям F_{ex} (2) и F_z (4) указанные две ориентации совершенно эквивалентны (см. рис. 1 при $\varphi_H = \pi/4$, $\varphi = 0$ и $\theta = \pi/2$).

2) Наличие падающих участков в полях $H = H_2$ и $H = H_{2'}$. При $|H| < |H_2| = |H_2|$ существуют две устойчивые конфигурации векторов \mathbf{M}_1 и \mathbf{M}_2 по отношению к H (рис. 4). В одной из них угол между \mathbf{M}_1 и его легкой осью \mathbf{c}_1 больше, чем между \mathbf{M}_1 и его трудной осью \mathbf{c}_2 т.е. ($\mathbf{M}_1\mathbf{c}_1$) < ($\mathbf{M}_1\mathbf{c}_2$) и аналогично ($\mathbf{M}_2\mathbf{c}_2$) < ($\mathbf{M}_2\mathbf{c}_1$). В этом состоянии магнитная анизотропия способствует увеличению проекций \mathbf{M}_1 и \mathbf{M}_2 на поле H. Для второго состояния с ($\mathbf{M}_1\mathbf{c}_1$) > ($\mathbf{M}_1\mathbf{c}_2$) и ($\mathbf{M}_2\mathbf{c}_2$) > ($\mathbf{M}_2\mathbf{c}_1$), которое по энергии лежит ниже первого, магнитная анизотропия вместе с обменом F_{ex} (2) препятствует ориентации \mathbf{M}_1 и \mathbf{M}_2 вдоль H. В результате, суммарный

момент $m = |\mathbf{M}_1 + \mathbf{M}_2|$ в первом состоянии оказывается больше, чем во втором.

При $H = |H_2|$ первое состояние с более высокой энергией теряет устойчивость и система скачком переходит во второе более низкое по энергии состояние с меньшей величиной $m = |\mathbf{M}_1 + \mathbf{M}_2|$.

3) Наличие точки ветвления 3, соответствующей фазовому переходу второго рода. В этой точке сливаются кривые намагничивания из двух различных состояний: с $\mathbf{m}(0) \uparrow \downarrow \mathbf{H}$ (сплошная линия на рис. 3) и с $\mathbf{m}(0) \perp \mathbf{H}$ (пунктир на рис. 3). При намагничивании из состояния с $\mathbf{m}(0) \uparrow \downarrow \mathbf{H}$ поле *H* изменяет угол между векторами \mathbf{M}_1

Рис. 4. Две возможные конфигурации векторов M_1 и M_2 для полей $H < H_2$.

и **M**₂. Во втором случае (**m**(0) \perp **H**) намагничивание происходит в два этапа. Вначале магнитный момент поворачивается в плоскости (*x*, *y*), ориентируясь вдоль поля *H*. При этом он слабо изменяется по величине (пунктирный участок кривой намагничивания на рис. 3). Этот процесс заканчивается при $H = H_3(\mathbf{m}(H_3) \parallel \mathbf{H})$, после чего система "забывает" о начальном состоянии и дальнейшее намагничивание происходит как в случае **m**(0) $\uparrow \downarrow$ **H**.

При H > 0 кривые на рис. З описывают процессы намагничивания различных доменов, соответствующих четырем решениям (6), (7) (при H = 0). Верхняя ветвь петли гистерезиса соответсвует намагничиванию доменов с $\mathbf{m}(0) \uparrow \uparrow \mathbf{H}$, нижняя — доменов с $\mathbf{m} \uparrow \downarrow \mathbf{H}$, пунктирная кривая — доменов с $\mathbf{m}(0) \perp \mathbf{H}$. Видно, что при $H > H_2$ остается только одна кривая, т.е. пленка становится однодоменной (если при H = 0 она была многодоменной).

Теперь рассмотрим процессы перемагничивания пленки, которые соответствуют изменениям величины $m_H(H)$ при уменьшении поля Н. Если Н уменьшать от значения $H > H_2$, то поведение $m_H(H)$ соответствует верхней ветви гистерезисной петли на рис. 3. Повторное намагничивание (т. е. изменение $m_H(H)$ при увеличении H) зависит от того, с какого места на этой ветви начнется увеличение *H*. Если от значения $H < H_2 = -H_2$, то перемагничивание пойдет по ниженй ветви петли (тройная стрелка). Если от значения Н в интервале $H_{2'} < H < H_{3'}$, то до точки $H = H_{3'}$ величина $m_H(H)$ будет следовать по верхней ветви гистерезисной петли, затем (после точки с $H = H_{3'}$) $m_H(H)$ перейдет с верхней ветви на нижнюю, следуя пунктирной линии на рис. 3 (двойная стрелка). Наконец, если уменьшение Н начать с величины $H > H_{3'} = -H_3$, то значения $m_H(H)$ останутся на верхней ветви петли так, что перемагничивание произойдет без гистерезиса (одинарная стрелка).

Нам осталось сделать последнее замечание по результатам этого раздела, которое касается зависимости $m_H(H)$ от угла между осями \mathbf{c}_1 и \mathbf{c}_2 (рис. 1). Как отмечалось выше, обсуждаемые особенности кривых перемагничивания максимальны при $\mathbf{c}_1 \perp \mathbf{c}_2$. При уменьшении угла между \mathbf{c}_1 и \mathbf{c}_2 (1' и 2') на этих кривых сближаются, а следовательно уменьшается величина скачка $m_H(H)$ при $H = H_2$ и $H = H_{2'}$. При $\mathbf{c}_1 \parallel \mathbf{c}_2$ рассматриваемая трехслойная пленка по своим магнитным свойствам не отличается от легкоосного антиферромагнетика, когда H лежит в плоскости пленки. При намагничивании пленки перпендикулярно ее поверхности необходимо принять во внимание размагничивающее поле $4\pi M_0$, которое в наших расчетах не учитывалось.

4) Кривые намагничивания во вращающемся магнитном поле. В предыдущем разделе приведены результаты расчетов величин $m_H(H)$ при двух ориентациях H($\varphi_H = \pm \pi/4$). Поскольку при других значения φ_H кривые перемагничивания значительно отличаются, мы проанализировали также и ориентационные зависимости

Рис. 5. Зависимости проекции намагниченности m_H (сплошная линия) на магнитное поле и модуля намагниченности m (пунктирная линия) от угла φ'_H между полем H и равновесной намагниченностью m(0) (намагниченность выражена в единицах магнитного момента $2M_0$, параметр анизотропии $\frac{H_A}{H_E} = 0.6$): (a) $\frac{H}{H_E} = 0.3$, (b) $\frac{H}{H_E} = 0.6$.

двух магнитных характеристик: величины результирующего момента пленки $m = |\mathbf{M}_1 + \mathbf{M}_2|$ и его проекции на магнитное поле m_H . Для анализа были выбраны именно эти характеристики, поскольку они обычно исследуются различными экспериментальными методами. Для определения m_H удобнее использовать данные магнитных измерений, тогда как m можно находить также из данных по магнетосопротивлению.

Результаты расчетов, приведенные на рис. 5, соответствуют соотношению $H_A/H_E = 0.6$. По горизонтальной оси для удобства отложен угол φ'_H , который в отличие от φ_H отсчитывается от равновесной ориентации m(0), а не от оси c_1 . Значения поля H, при которых вычислялись угловые зависимости $m(H, \varphi'_H)$ и $m_H(H, \varphi'_H)$ приведены в подписи к рис. 5. При $H/H_E \ll 1$ величина $m(H, \varphi'_H) \cong m(0)$, а $m_H(H, \varphi'_H) \sim \cos(\varphi'_H)$ (на рис. 5 этот случай не представлен). С ростом H минимум на кривой $m_H(H, \varphi'_H)$ в точке $\varphi'_H = \pi$ расщепляется на два минимума при $\varphi'_H \,pprox\, 2$ и $\varphi'_H \,pprox\, 4$, а в точке $\varphi'_{H} \approx \pi$ появляется максимум (рис. 5). При дальнейшем увеличении Н аналогичный максимум появляется и на зависимости $m(H, \varphi'_H)$. Качественное изменение в поведении $m_H(H, \varphi'_H)$ и $m(H, \varphi'_H)$ происходит при $H = H_A$, когда на месте минимумов при $\varphi'_H \approx 2$ и $\varphi'_H \approx 4$ возникают скачки, соответствующие переориентации вектора $\mathbf{m} = \mathbf{M}_1 + \mathbf{M}_2$ в новое равновесное состояние (рис. 5, b). Величина этих скачков δm и δm_H зависит от отношения H_A/H_E . В рассматриваемом случае $H_A/H_E = 0.6$ для δm и δm_H зависит от отношения H_A/H_E . В рассматриваемом случае $H_A/H_E = 0.6$ для δm и δm_H получаются значения $\delta m \approx \delta m_H \approx 0.25(2M_0)$, где $2M_0$ — магнитный момент насыщенной пленки. Это означает, что для пленки с гигантским магнитосопротивлением, которое описывается величиной $\Delta \rho = \rho(0) - \rho(2H_E)$, соответствующее измерение магнетосопротивления составит весьма значительную величину

$$\delta \rho / \Delta \rho = \delta m / 2M_0 \approx 0.25. \tag{12}$$

Однако с уменьшением H_A/H_E отношение $\delta \rho/\Delta \rho$ также убывает. Например, при $H_A/H_E = 0.2$ получилось $\delta \rho/\Delta \rho \approx 0.1$.

При $H > H_A$ скачки *m* и m_H при $\varphi'_H \approx 2$ и $\varphi'_H \approx 4$ сохраняются в интервале полей $H_A \leq H \leq 2H_A$, но убывают по величине. Наконец, при $H > H_E$ зависимости $m(H, \varphi'_H)$ и $m_H(H, \varphi'_H)$ принимают вид $m(H, \varphi'_H) \approx 2M_0 + k \cos(\varphi'_H)$, $m_H(H, \varphi'_H) \approx 2M_0 + k_H \cos(\varphi'_H)$ с коэффициентами пропорциональности *k* и k_H , которые обращаются в нуль при $H = 2H_E$.

Авторы признательны Н.Г. Бебенину за стимулирующие дискуссии.

Работа выполнена при финансовой поддержке РФФИ (проект № 96-02-16489).

Список литературы

- [1] R.E. Camley, R.L. Stamps. J. Phys.: Cond. Matt. 5, 23, 3727 (1993).
- [2] B. Dieny, J.P. Gavigan, J.P. Rebouillat. J. Phys.: Cond. Matt. 2, 159 (1990).
- [3] B. Heinrich, J.F. Cochran. Advances in Physics 42, 5, 523 (1993).
- [4] Свойства пленочных монокристаллов магнитоупорядоченных веществ / В сб. научных трудов института физики им. Л.В. Киренского СОРАН. Красноярск (1978).
- [5] Е.А. Туров. Физические свойства магнитоупорядоченных кристаллов. Изд-во АН СССР, М., (1963).