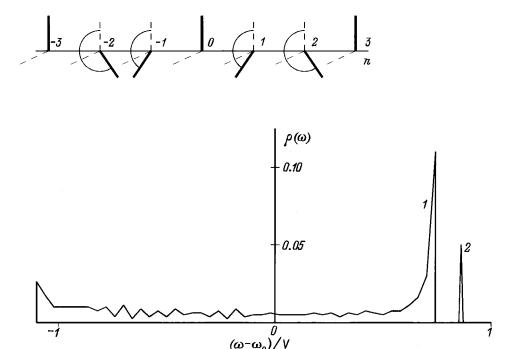
Покальные поляритоны нового типа на границе раздела гиротропных энантиоморфных кристаллов

© О.А. Дубовский, А.В. Орлов

Физико-энергетический институт, 249020 Обнинск, Калужская обл., Россия

(Поступила в Редакцию 13 апреля 1998 г.)

Показано, что на границе раздела энантиоморфных двойников — гиротропных кристаллов с левовинтовым и правовинтовым вращением плоскости поляризации света — могут распространяться локальные поляритоны нового типа. Волновая функция этих локальных поляритонов сильно, с изменением знака осциллирует на длине постоянной решетки вблизи границы раздела, и при удалении от границы период пространственных осцилляций возрастает. Терм локального поляритона отщеплен от зоны делокализованных состояний в высокочастотную область. Расчеты радиационного уширения этого терма показывают, что для локального поляритона возможен эффект гигантского увеличения затухания ("seperradiance"). Найдена величина вращения поляризации определяемого локальным поляритоном.


Исследование экситонных и колебательных возбуждений, локализованных на различных дефектах кристаллической решетки — примесях, вакансиях, дислокациях и на границах кристаллов — привлекает внимание в связи с возможностью их технологического использования в различных оптических устройствах и при решении проблем устойчивости различных твердотельных материалов. Соответствующие волновые функции локальных экситонных и фононных состояний различного типа обычно монотонно спадают при удалении от дефекта, и радиус локального состояния, зависящий от величины параметра, определяющего дефект, например изотопического сдвига для изотопической примеси [1,2], обычно существенно превышает постоянную решетки. В работах [3,4] в развитие исследований гиротропных кристаллов, в том числе жидких кристаллов, вращающих плоскость поляризации света [5], были найдены локальные поляритоны (смешанные экситон-фотонные моды) нового типа, распространяющиеся вдоль своего рода дефекта — границы раздела разновращающих гиротропных энантиоморфных кристаллов типа кварца — двойников с левовинтовым и правовинтовым вращением. Существование этих локальных поляритонов (ЛП) в рамках феноменологической электродинамики с использованием дополнительных граничных условий (ДГУ) целиком связано с эффектом пространственной дисперсии [6]. Они имеют ряд необычных особенностей в поведении дисперсионных кривых и параметров пространственного затухания. Отметим, что эти ЛП были найдены только для кристаллов класса $C_{2\nu}$ ромбической сингонии и класса D_{2d} тетрагональной сингонии. При этом оставался открытым вопрос о микроскопическом изучении возможности существования локальных состояний такого типа во всем наборе кристаллических классов с тестированием соответствующих дискуссионных и в настоящее время ДГУ, которые принципиально определяют саму возможность существования ЛП и их параметры. В настоящей

работе в рамках микротеории исследуется доступная для первоначального изучения система контактирующих лево- и правовращающих одномерных кристалов. Результаты данной работы могут быть непосредственно использованы в последующем при исследовании двумерных и трехмерных кристаллических систем, вопервых, и, кроме того, реальными системами такого типа могут быть гиротропные полимерные и биологические цепочки, экспериментально и теоретически исследуемые в ряде работ [7]. Найдено локальное поляритонное состояние нового, специфического типа с сильно осциллирующей по знаку и пространственно затухающей волновой функцией и термом локального состояния, отщепленным от зоны делокализованных состояний. Полученный результат показывает, что, повидимому, ЛП найденного в [3,4] и в данной работе типа могут существовать не только в кристаллах классов $C_{2\nu}, D_{2d}$, но и в двойниках других кристаллических групп. Отметим, что, например, кварц имеет симметрию D_3 .

На вставке к рис. 1 схематически представлена являющаяся в некотором смысле продолжением простейшей двухосцилляторной модели Куна [8] кристаллическая цепочка периодически расположенных перпендикулярных оси дипольных осцилляторов соответствующих мономеров с левовинтовым вращением на постоянной решетки на угол $2\pi/3$ в области с номерами узлов $n\leqslant 0$ и правовинтовым вращением в области $n\geqslant 0$. В нумерации узлов $n=\ldots-2,-1,0,+1,+2\ldots$ центральному осциллятору, разделяющему области левовинтового и правовинтового вращения, отвечает значение n=0.

Использование соответствующей микротеории [1], включающей в рамках представления вторичного квантования учет трансляционного движения экситонов и экситон-фотонного запаздывающего взаимодействия, приводит после диагонализации соответствующего гамильтониана к следующей системе секулярных уравнений для волновой функции Ψ_n симметричного поляри-

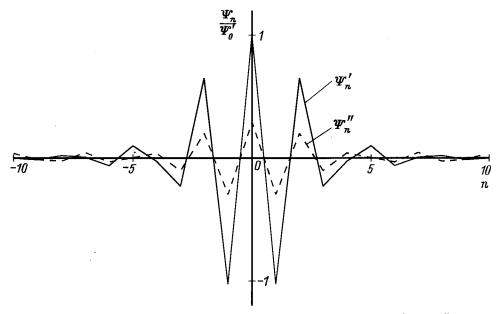
11 337

Рис. 1. Плотность поляритонных состояний контактирующих энантиомерфных кристаллов. *1* — зона делокализованных состояний, *2* — терм локального поляритона. На вставке — модельная цепочка дипольных осцилляторов.

тонного состояния $\Psi_n = \Psi_{-n}$ с энергии $\hbar\omega$

$$(\omega^{2} - \omega_{0}^{2})\Psi_{n} = \frac{2\omega_{0}|\mathbf{P}|^{2}}{\hbar a^{3}} \sum_{m \geqslant 0} \left[(1 - \delta_{nm})\varphi(\omega, (n - m)) + (1 - \delta_{m0})\varphi(\omega, (n + m)) \right]$$

$$\times \cos\left(\frac{2\pi}{3}|n - m|\right)\Psi_{m}, \qquad (1a)$$


$$\varphi(\omega, |n \pm m|) = \left[\frac{1}{|n \pm m|^{3}} - i\frac{((\omega/c)a)}{|n \pm m|^{2}} - \frac{((\omega/c)a)^{2}}{|n \pm m|} \right] \exp\left[i\left(\frac{\omega}{c}a\right)|n \pm m|\right],$$

$$0 \leqslant n \leqslant N. \qquad (1b)$$

В (1) ω_0 — частота дипольного перехода в изолированной молекуле, **P** — соответствующий матричный элемент оператора дипольного момента, a — постоянная цепочки, исключено самодействие ($n \neq m$), второй член в правой части (1a) определяет взаимодействие энантиоморфных кристаллов, первый член в (1b) определяет кулоновское взаимодействие на близких расстояниях, третий — взаимодействие в волновой зоне, второй — в промежуточной области, 2N+1 — число узлов цепочки. Точное решение сложной системы уравнений (1) с определением комплексных $\omega = \omega' - i\omega'$ и $\Psi_n = \Psi'_n + i\Psi''_n$ представляется достаточно трудной задачей, поскольку ω входит в правую часть весьма

сложным образом. Отметим, что это может быть в последующем выполнено с использованием примененной в [9] процедуры решения "обратной" задачи с нахождением $|\mathbf{P}|^2/\hbar a^3$ как соответствующего "собственного значения" при фиксированных ω' , ω'' .

Первоначально был проведен предварительный расчет собственных волновых функций и энергий экситона в такой системе при неучете запаздывающего взаимодействия, т.е. при $c \to \infty$, $\omega/c \to 0$, и в (1) было оставлено только кулоновское диполь-дипольное взаимодействие $\sim 1/|n \pm m|^3$. Расчет спектра частот и волновых функций такой системы показал, что выше верхнего края зоны делокализованных экситонных состояний существует отщепленный от края по частоте на величину $\sim 0.12 |\mathbf{P}|^2/\hbar a^3$ терм локального состояния (как на рис. 1) с сильно осциллирующей и затухающей волновой функцией (как на рис. 2). Отличительной особенностью этого состояния является то обстоятельство, что вблизи границы раздела осцилляции с изменением знака происходят на длине постоянной решетки, а при удалении от границы раздела период пространственных осцилляций постепенно растет. Радиус локального состояния г, оцениваемый по формуле $\Psi_n \cong \Psi_0 \exp[-(|n|a/r)](-1)^4$, составляет величину $r\cong 10a$. Результаты проведенного рассмотрения с учетом только кулоновского взаимодействия указали на принципиальную возможность существования ЛП, и в последующем была проведена диагонализация полной соответствующей матрицы, отвечающей системе уравнений (1). При этом в правой части (1а) для упро-

Рис. 2. Пространственная зависимость волновой функции локального поляритона $\Psi_n^{(l)} = \Psi_n^{(l)'} + i \Psi_n^{(l)''}$. Сплошная линия — $\Psi_n^{(l)'}$, штриховая линия — $\Psi_n^{(l)''}$.

щения расчетов в гайтлер—лондоновском приближении полагалось фиксированным значение $\omega=\omega_0$. Значение оптического параметра $(\omega_0/c)a$ полагалось равным типичному в оптике для различных кристаллов значению $(\omega_0/c)a=10^{-3}$. В результате расчетов были получены частота ω_l' и затухание ω_l'' поляритона в единицах $V\equiv |\mathbf{P}|^2/\hbar a^3$, его волновая функция $\Psi_n^{(l)'}=\Psi_n^{(l)'}+i\Psi_n^{(l)''}$ с основными особенностями пространственного поведения, указанными выше.

На рис. 1 зона делокализованных состояний 1 представлена в виде графика плотности состояний, рассчитанной по полученным величинам собственных значений в цепочке из 801 узла при $(\omega_0/c)a=10^{-3}$. Поведение плотности состояний в этой зоне типично для линейного кристалла, однако, отметим, с разновысокими максимумами на границах зоны. Отщепленный на $0.12|\mathbf{P}|^2/\hbar a^3$ от верхней границы зоны одиночный терм локального поляритонного состояния условно представлен пиком 2. Радиационное уширение этого терма ЛП ω_l'' существенно меньше, чем отщепление терма от верхнего края зоны, их отношение очень мало, $\hbar\omega_l''/(\hbar\omega_l'-\hbar\omega_{\rm max})=10^{-5}$, и графическое представление уширения пика на рис. 1 имеет только демонстрационный характер. Вместе с тем найденное абсолютное значение уширения локального состояния существенно превышает уширение изолированного мономера $\omega_l''\cong (10-100|\mathbf{P}|^2)(\omega_0/c)^3/\hbar$ при значениях $\omega_0 a/c \cong 10^{-3} - 10^{-4}$. Для численной оценки абсолютного значения радиационного уширения терма ЛП можно использовать типичные экспериментальные значения соответствующих энергетических параметров $\hbar\omega_0\cong 1\,{
m eV},\, |{f P}|=0.2\,{
m \AA}\cdot e,\, \omega_0 a/c\cong 10^{-3},\,$ ширина экситонной зоны $|\mathbf{P}|^2/a^3 \cong 0.1 \,\mathrm{eV}$. При этом радиационное затухание изолированного мономера $\hbar \gamma_0 = |\mathbf{P}|^2 (\omega_0/c)^3$ составляет величину $\hbar\omega_0 \cong 10^{-10}\,\mathrm{eV}$ и уширение терма ЛП $\hbar\omega_l''\cong 10^{-9}-10^{-8}\,\mathrm{eV}$ при $\omega_0 a/c\cong 10^{-3}-10^{-4}.$ То обстоятельство, что уже в одномерной системе существует значительное радиационное уширение термов ЛП указывает на то, что для локального состояния найденного типа в двумерных и трехмерных двойниковых кристаллических системах может наблюдаться эффект гигантского увеличения уширения ("superradiance"), исследованный теоретически впервые в [10] для одномерных и двумерных однородных кристаллов и обнаруженный впоследствии экспериментально [11,12]. При этом большой фактор $(c/\omega_0 a)\approx 10^3$ для двумерных и $(c/\omega_0 a)^2\approx 10^6$ для трехмерных двойников [10] может увеличить радиационное уширение до экспериментально наблюдаемых величин порядка $10^{-3}-1\,\mathrm{meV}.$

На рис. 2 представлена волновая функция локального состояния $\Psi_n^{(l)} = \Psi_n^{(l)'} + i \Psi_n^{(l)''}$. Видно, что $\Psi_n^{(l)'}$ (сплошная линия) имеет сильные осцилляции с изменением знака на длине a вблизи границы раздела, а при удалении от границы эта длина возрастает. Волновая функция затухает на длине $\sim 10a$ (из аппроксимации функцией $\exp[-\chi na](-1)^n$). Мнимая часть $\Psi_n^{(l)''}$ (штриховая линия), увеличенная на рис. 2 в 10^7 раз, имеет аналогичные затухание и осцилляции.

Осцилляции волновой функции на длине *а* на первый взгляд должны приводить к существенному уменьшению соответствующих матричных элементов, определяющих интенсивность различных динамических процессов с распадом и возбуждением этого локального состояния. Однако, например, аналогичное, осциллирующее на длине *а*, поведение бифононных волновых функций [13] при определенном соотношении между знаками константы

ангармонизма и эффективной массы не только не приводит к существенному уменьшению сечения деления бифононов нейтронами, но, наоборот, дает при определенном соотношении этих знаков то же значение сечения, что и при монотонном, неосциллирующем, спадании волновой функции, что свидетельствует о некоторой универсальности, отмечавшейся в определенных моментах и ранее. Этот интересный вопрос для найденных ЛП требует дальнейшего исследования.

В связи с этим и в плане исследования существенного при изучении гиротропных кристаллов вопроса о вращении плоскости поляризации представляет интерес вопрос о поляризации излучения при распаде найденного локального состояния. В точке **R** волновой зоны напряженность электрического поля **E** данной кристаллической системы излучающих осцилляторов может быть получена из следующего соотношения:

$$\mathbf{E}(\mathbf{R}) = -\sum_{n} \frac{(\omega^{2}/c^{2})}{|\mathbf{R}_{n}|^{3}} \left[\mathbf{R}_{n} [\mathbf{R}_{n} \mathbf{P}_{n}] \right] \exp \left(i \frac{\omega_{l}}{c} |\mathbf{R}_{n}| \right),$$

$$\mathbf{R}_{n} = \mathbf{R} - \mathbf{j} n a, \quad \mathbf{P}_{n} = |\mathbf{P}| \Psi_{n}^{(l)} \mathbf{e}_{n}, \tag{2}$$

где **j** — орт вдоль оси цепочки, **e**_n — единичные векторы вдоль дипольных моментов. Для упрощения расчетов использовались аппроксимирующие волновые функции локального состояния $\tilde{\Psi}_n^{(l)} = \Psi_0 \exp[-\chi na](-1)^n$. Подстановка этой функции в (2) дает в предположении сильного затухания $\chi a > 1$ следующее значение для напряженности электрического поля **E**:

$$\mathbf{E}(\mathbf{R}) = -\frac{(\omega^2/c^2)}{|\mathbf{R}|^3} \left[\mathbf{R} \left[\mathbf{R} (\mathbf{P}_0 + \sqrt{3}e^{-\chi a} [\mathbf{j}\mathbf{P}_0]) \right] \right]$$

$$\times \exp \left[i \frac{\omega_l}{c} |\mathbf{R}| \right]. \tag{3}$$

Из (3) видно, что эффективный дипольный момент системы повернут относительно центрального дипольного момента в правую сторону, к вектору $[\mathbf{jP}_0]$, и величина этого поворота определяется фактором затухания $\exp(-\chi a)$. естественно, использование точных значений Φ_n (рис. 2) численно изменит величину соответствующего вращения.

Локальные поляритоны найденного типа существуют, очевидно, и в кристаллических системах большей размерности. Представляет интерес дальнейшее исследование этого вопроса применительно к двумерной системе граничащих энантиоморфных полуплоскостей с одномерной границей раздела.

В заключение авторы выражают искреннюю признательность В.М. Аграновичу за полезные обсуждения.

Работа выполнена при поддержке Российской государственной научно-технической программы "Актуальные направления в физике конденсированных сред" по направлению "Нейтронные исследования вещества". Первый из авторов благодарит за частичную поддержку по гранту Фольксваген-фонда 1/69928.

Список литературы

- [1] В.М. Агранович. Теория экситонов. Наука, М. (1969).
- [2] V.M. Agranjvich, O.A. Dubovsky. Optical Properties of Mixed Crystals. North-Holland, Amsterdam (1988). P. 297.
- [3] В.М. Агранович, О.А. Дубовский. Письма в ЖЭТФ 26, 9, 641 (1977).
- [4] В.М. Агранович, О.А. Дубовский. ФТТ 20, 11, 3237 (1978).
- [5] Я.Б. Зельдович. ЖЭТФ 67, 6, 2357 (1974).
- [6] В.М. Агранович, В.Л. Гинзбург. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. Наука, М. (1979). 432 с.
- [7] W. Moffitt. J. Chem. Phys. 23, 1, 467 (1956).
- [8] М.В. Волькенштейн. Молекулярная оптика. Гостехиздат; М. (1951). 744 с.
- [9] V.M. Agranovich, O.A. Dubovsky, D. Basko. J. Chem. Phys. 106, 6, 3896 (1997).
- [10] В.М. Агранович, О.А. Дубовский. Письма в ЖЭТФ 3, 2, 345 (1966).
- [11] Я. Аавиксоо, Я. Липмаа, Т. Рейнот. Опт. и спектр. 62, 5, 419 (1987).
- [12] B. Deveaud, F. Clerot, N. Roy, K. Satake, B. Sermage, D.S. Katzer. Phys. Rev. Lett. 67, 2355 (1991).
- [13] О.А. Дубовский, А.В. Орлов. ФТТ, в печати (1999).