Локальные параметры порядка на дипольном центре Gd³⁺- O²⁻ в CsSrCl₃ и парамагнитный резонанс

© В.А. Важенин, М.Ю. Артемов, В.Б. Гусева

Институт физики и прикладной математики при Уральском государственном университете, 620083 Екатеринбург, Россия

E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 22 июня 1998 г.)

В окрестности комнатной температуры по угловой зависимости спектра ЭПР тетрагонального (в прафазе) центра Gd³⁺ – O²⁻ с большим начальным расщеплением определены углы поворота ближайщего хлорного октаэдра, связанные с компонентами ротационных мод. Обсуждаются вопросы аномального уширения линий ЭПР в районе структурных превращений.

1. В [1–6] методом электронного парамагнитного резонанса исследована и установлена последовательность

$$O_{h}^{1} \xrightarrow{[00\psi]} D_{4h}^{5} \xrightarrow{[0\varphi\psi]} D_{2h}^{17} \xrightarrow{[\varphi_{2}\varphi_{1}\psi]} C_{2h}^{2} \qquad (1)$$

структурных переходов первого рода в CsSrCl₃, происходящих в результате конденсации ротационных мод типа M₃ и R₂₅. В качестве зондов в этих работах использовались ионы Gd³⁺, замещающие ионы Sr²⁺ внутри хлорного октаэдра и компенсированные либо нелокально (центр типа 1), либо вакансией ближайшего стронция (центр типа 2). Выбор в качестве угла поворота октаэдра при структурном переходе угла поворота главных осей тензора тонкой структуры четвертого ранга (параметры шестого ранга определены с большой погрешностью, а второго — содержат вклады от деформации октаэдра, вызванной его поворотом) показал, что для центров 2 с осью компенсации ОК $\parallel \psi$ или $\parallel \varphi$ и для центров 1 величины углов близки и хорошо согласуются с оценками из рентгеновских исследований, тогда как присутствие в плоскости вращения компенсатора (центр 2) резко уменьшает локальный поворот октаэдра [5,6].

Аналогичная редукция локального угла поворота наблюдалась в SrTiO₃ на центрах Fe³⁺, ассоциированных с вакансией кислорода ($\varphi(T) = (1.59 \pm 0.05)\varphi_{loc}(T)$ [17]), с той лишь разницей, что вакансия кислорода локализована на узле ближайшего октаэдра, тогда как вакансия Sr²⁺ в CsSrCl₃ находится в центре соседнего октаэдра и не может участвовать во вращении октаэдра, содержащего парамагнитный ион.

В исследуемых кристаллах CsSrCl₃ наблюдается тетрагональный спектр с большим начальным расщеплением (импа 3), который следует отнести к центру Gd³⁺ с компенсацией ионом O²⁻ в позиции хлора ближайшего октаэдра [4]. Сравнение вращения октаэдра, содержащего центр типа 3, в окрестности структурных переходов с поведением центров Fe³⁺–V₀ в титанате стронция затруднего быстро растущей шириной линии центра 3 (рис. 1). Обработка данных рис. 1 дает для скорости спин-решеточной релаксации зависимость $1/T_1 = 10^{-5}T^5$ Hz. В отличие от центра 3 сигналы центров 1 и 2 в актуальном диапазоне температур практически не уширяются (ширина составляет $\sim 0.5 \text{ mT}$), а при T < 200 K на мощности СВЧ-порядка единиц милливатт заметно насыщаются.

2. Как уже отмечалось, в районе структурных превращений $CsSrCl_3$ получить информацию о локальных искажениях из спектра ЭПР-центров типа *3* затруднительно ввиду большой ширины линий. Однако уже в окрестности комнатной температуры можно получить достаточно

Рис. 1. Температурная зависимость ширины линии перехода $5 \leftrightarrow 6$ центра типа 3 при **B** $\parallel \psi \perp$ OK (точки *I* в диапазоне 250-300 К исследуемый сигнал перекрывается с другим) и при $\theta = 69.5^{\circ}$ (точки 2 в интервале 310-380 К происходит расщепление сигнала, скрытое в ширине линии). Стрелками показаны температуры структурных переходов, θ — угол между **B** и OK.

Рис. 2. Угловая зависимость резонансных положений перехода $5 \leftrightarrow 6$ центров типа $3 \perp (T = 298 \text{ K}, \text{ азимутальный угол } \bar{\varphi} = 90^{\circ}$, в кубической фазе минимумы зависимостей находятся при $\theta = 0^{\circ}$).

разрешенные угловые зависимости ЭПР-спектра, пригодные для оценки локальных углов поворота октаэдра (рис. 2, 3).

Для измерений использовались практически монодоменные относительно ψ образцы, отобранные из кристаллов, выращенных А.Е. Усачевым, и сохраняющие свою доменную структуру после пребывания в кубической фазе. Во второй и третьей низкосимметричных фазах существуют три неэквивалентных центра типа 3 симметрии C_i . По аналогии с центрами типа 2 [6] будем использовать следующие обозначения:

центр
$$3 \parallel - z \parallel \psi \parallel \text{OK}, y \parallel \varphi_1, x \parallel \varphi_2;$$

центр $3 \perp 1 - z \parallel \text{OK} \parallel \varphi_2, y \parallel \psi, x \parallel \varphi_1;$
центр $3 \perp 2 - z \parallel \text{OK} \parallel \varphi_1, y \parallel \psi, x \parallel \varphi_2,$ (2)

где x, y, z — оси локальной системы координат. Спектр ЭПР каждого из этих центров в произвольной ориентации магнитного поля будет расщепляться на восемь спектров, отличающихся соотношением знаков трех параметров порядка.

В работах [5–6] показано, что для определения локальных углов поворота октаэдра необходим тщательный анализ измеренных углов поворота главных осей различных тензорных операторов тонкой структуры, совместное действие которых приводит к эффектам низкой симметрии (в частности, к несовпадению положений экстремумов угловых зависимостей различных ЭПР-переходов) [8] и делает угловые зависимости малоинформативными (в смысле прямого определения величины вращения октаэдра). В отличие от второго центра центр типа 3 практически аксиальный (доминирует b_{20} [4]) и эта ось жестко связана с ближайшим октаэдром, главные оси тензоров его тонкой структуры четвертого и шестого ранга также должны в основном определяться ориентацией хлорного октаэдра. В связи с этим можно надеяться, что путем измерения сдвига угловой зависимости ЭПР-спектра можно определить, как и в [7], величину поворота главной оси центра (ОК) в плоскости, перпендикулярной оси вращения октаэдра, пренебрегая при этом эффектами от других параметров порядка.

Примеры измерений локальных углов поворота октаэдра, связанных с φ_1 и φ_2 , для центров типа $3 \perp$ приведены на рис. 2, 3, где стрелками показан удвоенный сдвиг (удвоенный локальный угол поворота октаэдра) угловой зависимости. Как и в [2,9], поведение измеренных таким образом квадратов углов вращения ($b_{20} \sim \varphi^2$) вдали от структурных превращений линейно по температуре (рис. 4). Соотнесение этих зависимостей с φ_1 и φ_2 не может быть проведено на основании имеющихся экспериментальных данных. Для решения этого вопроса были привлечены результаты [4], где на основании температурных зависимостей положений ЭПР-переходов центров 1 и 2 сделан вывод о примерном равенстве вблизи третьего структурного перехода величин φ_1 и φ_2 . Предполагая температурное поведение φ_1 и φ_2 в районе структурных переходов качественно таким, как на рис. 4,

Рис. 3. Угловая зависимость резонансных положений перехода $5 \leftrightarrow 6$ центров типа $3 \perp$ при T = 313 K, $\bar{\varphi} = 90^{\circ}$, горизонтальная кривая принадлежит центру, для которого реализуется азимутальная зависимость.

Рис. 4. Температурное поведение локальных углов поворота октаэдра для центров типа $3 \perp$ (вблизи перехода измерения не проводились и приведенная зависимость схематична).

Рис. 5. Угловая зависимость резонансных положений перехода $5 \leftrightarrow 6$ центра типа *1* при комнатной температуре. Магнитное поле **B** вращается в плоскости $\perp \psi$ доминирующего домена, два сигнала при $\bar{\varphi} = 0^{\circ}$ соответствуют центрам в доменах с $\varphi_1 \parallel \mathbf{B}$ и $\varphi_2 \parallel \mathbf{B}$.

получаем предсказываемое равенство. На этом же рисунке показаны зависимости локального угла поворота, обязанного параметру порядка ψ , для центров $3 \perp$, измеренные также по величине сдвига угловой зависимости, но в другой установке монодоменного образца.

Поскольку в первой и второй низкосимметричных фазах угла поворота октаэдра на центре *I* неплохо коррелируют с параметрами порядка в чистом кристалле [5,6], а эффекты низкой симметрии невелики, можно надеяться, что зависимости рис. 5 могут служить источником оценки величины ψ при комнатной температуре (~ 8°, см. таблицу). На рис. 5 хорошо видно несовпадение положений экстремумов угловых зависимостей центров из двух доменов с одинаковой ориентацией ψ , обусловленное вкладами других параметров порядка. Оценки величин φ_1 и φ_2 , полученные на бывшем кубическом центре в иной геометрии, также приведены в таблице.

Результаты измерений сдвига угловых зависимостей (локальных углов поворота октаэдра), вызванных конденсацией φ_1 и φ_2 , на центре $3 \parallel$ (измерение поворота за счет ψ на этом центре невозможно в силу его аксиальности) приведены в таблице и на рис. 6. Полученные температурные зависимости имеют заметно большие, чем для $3 \perp$, погрешности, что в первую очередь обусловлено малой интенсивностью ЭПР-сигналов этих центров.

Величины локальных углов поворота ближайшего хлорного октаэдра при комнатной температуре (в градусах)

Углы поворота	Центр <i>3</i> ⊥1	Центр 3⊥2	Центр <i>3</i>	Центр 1
ψ	1.9	2.1	-	8
$arphi_1$	1.4	_	1.8	4.5
$arphi_2$	—	2.9	2.2	6.5

Слабость переходов 3 центра связана с необычным (в сравнении с центрами 2) соотношением интенсивности 3∥ и 3⊥, что хорошо видно на рис. 7 (аналогичные результаты получены и на других переходах). Можно сделать предположение (рис. 7), что концентрация центров 3 в доминирующем домене заметно меньше, чем центров 3⊥. Однако наблюдение, как и ожидалось, равных интенсивностей различно ориентированных центров 3 в кубической фазе и очень низкая вероятность изменения их ориентаций в низкотемпературных фазах заставляют отказаться от такого предположения. Вряд ли наблюдаемый эффект можно объяснить и различием в вероятностях переходов возмущения вследствие структурных переходов, создающие неэквивалентность $3 \parallel$ и $3 \perp$, слишком малы. Оценка из данных рис. 7 $\Delta b_{20}(\psi, \varphi_1, \varphi_2)$ и, следовательно, $\Delta b_{22}(\psi, \varphi_1, \varphi_2)$ при комнатной температуре приводит к величине ~ 100 MHz. Смешивание состояний за счет таких параметров и, следовательно, изменение вероятностей переходов будет составлять не более единиц процентов.

Рис. 6. Температурное поведение локальных углов поворота октаэдра для центров типа $3\perp$.

Кстати, $\Delta b_{20}(\psi)$ третьего центра, в отличие от центров *1* и *2* [5,6], величина отрицательная. Положительность этой величины для центров *1* и *2* привела к заключению о сжатии при первом фазовом переходе дефектного хлорного октаэдра вдоль оси вращения. Противоположный знак $\Delta b_{20}(\psi)$ центра *3*, видимо, указывает на вытягивание ближайшего октаэдра, хотя присутствие в нем иона компенсатора сильно затрудняет проведение суперпозиционного анализа [5,6].

Причиной необычного соотношения интенсивностей $3\parallel$ и $3\perp$ спектров может быть небольшое отличие в ширине линий, а также тот факт, что форма линии $3\parallel$ центра несколько ближе к лоренциану, чем $3\perp$.

Таким образом, наличие в первой координационной сфере парамагнитного иона Gd^{3+} зарядокомпенсирующего дефекта (иона O^{2-}) приводит к уменьшению (в 2–4 раза) углов вращения ближайшего октаэдра, обусловленных структурными переходами, не привнося, по-видимому, в температурное поведение этих вращений дополнительных особенностей.

3. Центры типа *I* и *2* особенностей в поведении ширины линии при фазовых переходах, как уже отмечалось в [2,6], не имеют. Измерение температурной зависимости ширины линии центра *3*, как при **B** $\parallel \psi \perp$ OK, так и при полярных углах магнитного поля, отличных от 90° (рис. 1), также не обнаружило особенностей в окрестности фазовых превращений.

Наиболее детально аномальное увеличение неоднородной ширины ЭПР-линий в районе структурных превращений исследовано в кристаллах SrTiO₃ (Fe³⁺ вакансия кислорода) [7,10], КТаО₃ (Fe³⁺ — вакансия кислорода, Fe³⁺) [11,12], Pb₅Ge₃O₁₁ (Gd³⁺) [13], испытывающих фазовый переход второго рода. В частности, в этих работах в результате исследования угловой зависимости аномальной ширины линии определен параметр спинового гамильтониана, флуктуации которого определяют уширение линии вблизи фазового перехода. Предполагается [11–13] или допускается [10], что указанные статические флуктуации возникают благодаря взаимодействию парамагнитных ионов с дефектами решетки через мягкую моду. Значительное увеличение ширины линии в окрестности структурного перехода наблюдалось в триглицинсульфате (Cr³⁺) [14] и $(CH_3NH_2 + CH_2COO^-)_3 \cdot CaCl_2 (Mn^{2+})$ [15], где эффект объяснялся аномальным ростом скорости спин-спиновой релаксации.

Критическое уширение линий ЭПР в кристаллах со стуктурными переходами первого рода было обнаружено в BaTiO₃ с Mn^{2+} [16], PbTiO₃ с Fe^{3+} [17], RbCaF₃ с $Gd^{3+}-O^{2-}$ [18], CH₃NH₃Al(SO₄)₂·12H₂O c Cr^{3+} [19], CH₃NH₃Ga(SO₄)₂·12H₂O и CH₃NH₃Al(SeO₄)₂·12H₂O с Cr^{3+} [20], NH₄Al(So₄)₂·12H₂O c Cr^{3+} [21], Pb₃(PO₄)₂ с Mn^{2+} и Gd³⁺ [22]. В ряде случаев в силу постоянства в исследуемом диапазоне температур формы линии [19,22] или отсутствия заметной угловой зависимости аномальной ширины линии [18,22] можно предполагать, что эффект обусловлен особенностями в поведении скорости релаксации.

Рис. 7. Спектр ЭПР центров типа 2 (переход $2 \leftrightarrow 3$) и 3 (переход $5 \leftrightarrow 6$) для ОК || **В** при комнатной температуре. $a - \mathbf{B} \parallel \psi$ доминирующего домена, $b - \mathbf{B} \perp \psi$ доминирующего домена.

В случае несегнетоэлектрических структурных переходов первого рода величина неоднородного уширения линий ЭПР-спектра высокотемпературной фазы за счет модуляции параметра порядка должна зависеть от соотношения исходной ширины ΔB и величины скачка в ЭПР-спектре δB . При $\delta B > \Delta B$, в связи с малой вероятностью образования конфигураций парамагнитного центра, слабо отличающихся своим спектром от наиболее вероятной, неоднородное уширение линий должно быть минимальным. Такой случай, видимо, реализуется в спектре изолированного иона Gd^{3+} и $Gd^{3+}-V_{Sr}$ в CsSrCl₃ $(\Delta B \sim 0.5 \,\mathrm{mT}, \,\delta B \sim 2 \,\mathrm{mT})$. С другой стороны, при $\Delta B \gg \delta B$ (для $\mathrm{Gd}^{3+}\mathrm{-O}^{2-}$ в CsSrCl₃ вблизи перехода $\Delta B > 3 \,\mathrm{mT}, \,\delta B < 1 \,\mathrm{mT})$ эффект уширения линий тоже не должен быть большим, поскольку аномальная ширина в этом случае пропорциональна δB .

Авторы выражают искреннюю благодарность А.Е. Усачеву за предоставленные монокристаллы.

Список литературы

- А.Е. Усачев, Ю.В. Яблоков, Л.А. Позднякова, К.С. Александров. ФТТ 19, 7, 2156 (1977).
- [2] А.Е. Усачев, Ю.В. Яблоков, С.Г. Львов. ФТТ 23, 5, 1439 (1981).
- [3] М.В. Черницкий, В.А. Важенин, А.Е. Никифоров, А.Е. Усачев, А.И. Кроткий, М.Ю. Артемов. ФТТ 33, 12, 3577 (1991).
- [4] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, М.В. Черницкий. ФТТ 34, 5, 1633 (1992).
- [5] В.А. Важенин, К.М. Стариченко, М.Ю. Артемов, А.Е. Никифоров. ФТТ 36, 9, 2695 (1994).
- [6] В.А. Важенин, М.Ю. Артемов. ФТТ 39, 2, 370 (1997).
- [7] Th. Von Waldkirch, K.A. Müller, W. Berlinger. Phys. Rev. B5, 11, 4324 (1972).
- [8] М.Л. Мейльман, М.И. Самойлович. Введение в спектроскопию ЭПР активированных кристаллов. Атомиздат, М. (1977). 270 с.
- [9] J.J. Rousseau, A. Leble, J.Y. Buzare, J.C. Fayet. Ferroelectrics 12, 201 (1976).
- [10] G.F. Reiter, W. Berlinger, K.A. Müller, P. Heller. Phys. Rev. B21, 1, 1 (1980).
- [11] Б.Е. Вугмейстер, М.Д. Глинчук, А.П. Пеяеный, Б.К. Круликовский. ЖЭТФ 82, 4, 1347 (1982).
- [12] Б.Е. Вугмейстер, В.В. Лагута, И.П. Быков, И.В. Кондакова, П.П. Сырников. ФТТ **31**, *2*, 54 (1989).
- [13] В.А. Важенин, Е.Л. Румянцев, М.Ю. Артемов, К.М. Стариченко. ФТТ 40, 2, 321 (1998).
- [14] K. Nishimura, T. Hashimoto. J. Phys. Soc. Jpn. 35, 6, 1699 (1973).
- [15] R. Lippe, W. Windsch, G. Volkel, W. Schulga. Sol. Stat. Commun. 19, 587 (1976).
- [16] В.В. Шапкин, Б.Ф. Громов, Г.Т. Петров, Я.Г. Гиршберг, Э.В. Бурсиан. ФТТ 15, 5, 1401 (1973).
- [17] С.Т. Кириллов, Ю.Г. Плахотников. Письма в ЖЭТФ 34, 11, 572 (1981).
- [18] J.Y. Busare, P. Simon. Ferroelectrics 54, 115 (1984).
- [19] D.E. O'Reilly, Tsang Tung. Phys. Rev. 157, 2, 417 (1967).
- [20] R. Navalgund, L.C. Gurta. Ferroelectrics 14, 767 (1976).
- [21] F.J. Owens. Phys. Stat. Sol. (b) 79, 623 (1977).
- [22] M. Razeghi. Phys. Stat. Sol. (b) 108, 175 (1981).