UV-поглощение тонкопленочных систем $RbAg_4I_5$ -RE (Sm, Yb)

© А.Л. Деспотули, Л.А. Матвеева

Институт проблем технологии микроэлектроники и особочистых материалов Российской академии наук, 142432 Черноголовка, Московская обл., Россия

E-mail: despot@ipmt-hpm.ac.ru

(Поступила в Редакцию 15 мая 1998 г.)

UV-спектры образцов, создаваемых вакуумным напылением тонких пленок Sm и Yb на пленки твердого электролита RbAg₄I₅ (300–350 K) толщиной 100–200 nm, содержат полосы сильного поглощения с максимумами в области 4.3 и 5.0 eV. После напыления Sm (~ 5 nm) ионная проводимость σ образцов уменьшается с σ_0 до $\approx 0.9\sigma_0$, а параметр кристаллической решетки SE с 11.24 Å до ≈ 11.15 Å. Полуширина рентгеновских отражений при этом возрастает с 0.5° до 0.8° . Дальнейший рост концентрации Sm в образцах изменяет картину рентгеновской дифракции. При этом увеличивается поглощение в области полос 4.3 и 5.0 eV, возникает новый край поглощения 3.8 eV, а σ уменьшается до $\sim 10^{-2}\sigma_0$. Предпологается существование генетической связи между UV-полосами сильного поглощения в высокодефектных серебро-галоидах системы RbAg₄I₅–Sm(Yb) и электронными переходами $4d^{10} \rightarrow 4d^95s$ в свободных ионах Ag⁺.

1. Твердый электролит (SE) — суперионный проводник RbAg₄I₅ [1-3] — классический объект ионики твердого тела [4]. Соединение имеет рекордно высокую Ag⁺-проводимость, что находит применение в технике. Влияние примесей на свойства RbAg₄I₅ исследовалось в ряде предшествующих работ. В [5,6] такие исследования были предприняты в связи с проблемой суперионной проводимости и вопросом стабильности RbAg₄I₅, сохранившими до настоящего времени свою актуальность. В [7] предложено создавать кристаллические структруры с высокими концентрациями примесных центров и своеобразными свойствами путем растворения подходящих металлов в каналах Ag⁺-проводимости RbAg₄I₅. Возможность растворения редкоземельных металлов (RE) в RbAg₄I₅ была впервые продемонстрирована в [7–9]. Исследуемые образцы создавались вакуумным напылением тонких пленок Sm (~ 5 nm) на пленки RbAg₄I₅ (293-350 К). Оптическое поглощение образцов в спектральном интервале $h\nu = 1.6-4.1\,\mathrm{eV}$ и величина их ионной проводимости $\sigma~(\approx~0.9\sigma_0)$ объяснены образованием допантов RbAg₄I₅ : Sm с концентрацией оптически активных центров (F-центры) $\sim~3\cdot10^{20}\,cm^{-3}.$ Согласно [9], в системе RbAg₄I₅-Sm при повышенном содержании Sm выделяется нестехиометрическая фаза с $\sigma \ll \sigma_0$ и краем поглощения в области 3.6–3.8 eV. В литературе отсутствуют данные по UV-поглощению RbAg₄I₅ в спектральном интервале 4.1-6 eV. В проекте [10] сделано предварительное сообщение об обнаружении полос сильного поглощения в UV-спектрах пленочных систем RbAg₄I₅-RE (Sm,Yb). Высказано предположение, что точечные дефекты (F-центры) нарушают pd-гибридизацию валентных зон серебро-галоидов RbAg₄I₅-Re и в этих условиях оказываются возможны ответственные за UV-полосы сильного поглощения электронные возбуждения, аналогичные возбуждениям Ag⁺-центров щелочно-галоидные кристаллы (ЩГК). В настоящей работе представлены экспериментальные результаты по UV-поглощению в серебро-галоидах RbAg₄I₅-RE (Sm,Yb). Объекты исследования впервые охарактеризованы данными рентгенофазового анализа.

2. Приемы создания образцов в вакууме $2 \cdot 10^{-6}$ Тогг, а также эксперименты по определению оптического поглощения и σ в системе RbAg₄I₅–RE (Sm) описаны в [9]. Рентгенофазовый анализ пленок RbAg₄I₅ толщиной $l \approx 100-200$ nm и образцов RbAg₄I₅–Sm ($l \approx 100-200$ nm, $l_{\rm Sm} \sim 5-15$ nm весовой толщины) выполнен при 293 K на CrK_{α,β}-излучении. Рентгенограммы получены по схеме Брэгга–Брентано за время ≈ 3 h. В пленках RbAg₄I₅ отражения (110), (221) и (311) имели достаточную интенсивность уже при $l \approx 100$ nm. Другие отражения SE также заметно превышали уровень фона при $l \sim 200$ nm. Отношения интенсивностей основных отражений SE соответствовали литературным данным [11].

3. На рис. 1 (спектры *1, 1а* и *2*) показано характерное UV-поведение оптической плотности $D(h\nu) = \lg(J_{quartz}/J_{SE})$ в исходных пленках RbAg₄I₅ (кварцевая подложка, $l_1 \approx 100$ nm, $l_2 \approx 200$ nm, один и тот же технологический цикл напыления) относительно кварцевого эталона. Спектры $D(h\nu)$ пленок имеют особенности в области 4.3 и 5.0 eV, которые не соответствуют особенностям пробной зонной схемы RbAg₄I₅, построенной в [12] по данным фотоэлектронной спектроскопии. Амплитуда изменений $D(h\nu)$ в области 4.3 и 5.0 eV возрастает с увеличением l, т.е. определяется объемными свойствами материала и составляет ~ 1/10 фундаментального поглощения.

После вакуумного осаждения Sm на пленки RbAg₄I₅ фундаментальное поглощение SE уменьшается, но в области 4.3 и 5.0 eV возникают полосы сильного поглощения. Выявляется также хвост сильного поглощения, спадающего от 6 eV в сторону меньших $h\nu$. Для регистрации UV-полос использовали пары пленок RbAg₄I₅ с $l_1 \approx l_2$ и $D_1(h\nu) \approx D_2(h\nu)$. Относительную оптическую плотность такой пары $D_r(h\nu) = \lg(J_1/J_2)$ определяли до и после осаждения RE на одну из пленок SE. Изменение относительной оптической плотности $\Delta D_r(h\nu)$ в максимумах UV-полос RbAg₄I₅: Sm достигает ~ 1/5 от фундаментального поглощения RbAg₄I₅.

Puc. 1. Спектры $D(h\nu)$ образцов (293 K) в системе RbAg₄I₅–Sm: 1 — исходная пленка RbAg₄I₅ с $l \approx 100$ nm. Ординаты увеличены на 0.5 по сравнению с экспериментальными данными; 1a — часть спектра 1 с экспериментальными значениями ординат; 2 — пленка RbAg₄I₅ с $l \approx 200$ nm. Ординаты точек увеличены на 0.2 по сравнению с экспериментальными данными; 3 — фаза с низким значением σ : на RbAg₄I₅ (спектры 1 и 1a) при 350 K осажден Sm с $l_{Sm} \approx 15$ nm; 4 — образец (см. спектр 3), 5 h хранения в сухом воздухе.

На рис. 2 показан спектр $\Delta D_r(h\nu)$ образца $RbAg_4I_5$: Sm с $\sigma \approx 0.9\sigma_0$, параметром решетки 11.15 ± 0.005Å и полушириной рентгеновских Соответствующие значения в отражений $\approx 0.8^{\circ}$. исходной пленке RbAg₄I₅ — σ_0 , 11.24 Å и 0.5°. В RbAg₄I₅ : Sm относительная интенсивность отражений (221) и (110) или (221) и (311) примерно в 1.5 раза больше, чем в исходной пленке RbAg₄I₅. Отражение (221) накладывается на сильное отражение (111) β -AgI. Отсюда следует возможность выделения AgI в процессе растворения RE в SE [9]. Согласно данным $D(h\nu)$, σ и рентгеновской дифракции, в сухом воздухе образцы RbAg₄I₅ : RE восстанавливаются до исходного RbAg₄I₅ за несколько дней (явление обсуждается в [9]).

На рис. 3 показан спектр $D(h\nu)$ RbAg₄I₅ : Yb в области $h\nu = 1.6-4.1$ eV, который подобен спектру RbAg₄I₅ : Sm (см. рис. 1 в [9]) и содержит полосу сильного поглощения с максимумом 2.4 eV в области прозрачности SE (окрашивание). Для того же образца RbAg₄I₅ : Yb на рис. 4 показан UV-спектр $\Delta D_r(h\nu)$, содержащий полосы 4.3 и 5.0 eV. Представленные рисунки демонстрируют уменьшение фундаментального поглощения SE. Рассматриваемые явления не зависят от атомного номера RE. Таким образом, выполняется одно из необходимых условий отнесения полосы 2.4 eV к F-центрам. При хранении образцов в сухом воздухе UV-полосы сильного поглощения SE : RE показывают красный сдвиг ~ 0.05 eV, который можно связать с увеличением параметра решетки.

На рис. 5 и 6 показаны спектры $D(h\nu)$ и $\Delta D_r(h\nu)$ образца с повышенным содержанием Sm. Спектр $D(h\nu)$ содержит два края поглощения: 3.3 eV (RbAg₄I₅) и 3.6 eV (фаза с низкой σ , сосуществующая с RbAg₄I₅: Sm [9]). Спектр $\Delta D_r(h\nu)$ содержит особенность в области края поглощения 3.6 eV, полосы сильного поглощения 4.3 и 5.0 eV, а также хвост сильного поглощения, спадающий от 6 eV в сторону меньших $h\nu$. В двухфазных образцах изменение оптической плотности в максимумах UV-полос достигает $\sim 1/4$ от фундаментального поглощения RbAg₄I₅. В таких образцах восстановление исходных спектров оптической плотности идет более медленно, чем в RbAg₄I₅:RE.

Рис. 2. Спектр $\Delta D_r(h\nu)$ пленок RbAg₄I₅ : Sm и RbAg₄I₅ ($l_{1,2} \approx 200$ nm) при 293 K. На RbAg₄I₅ при 350 K осаждена пленка Sm с $l_{\rm Sm} \approx 5$ nm.

Рис. 3. Спектры $D(h\nu)$ RbAg₄I₅ : Yb (293 K): 1 — исходная пленка RbAg₄I₅ с l = 160 nm; 2 — на RbAg₄I₅ (спектр 1) при 350 K осажден Yb с $l_{Yb} \approx 4$ nm; 3 — образец (спектр 2), 43 h хранения в сухом воздухе.

Рис. 4. Спектры $\Delta D_r(h\nu)$ пленок RbAg₄I₅ : Уb и RbAg₄I₅ $(l_{1,2} \approx 160 \text{ nm})$ при 293 K. На одну из пленок RbAg₄I₅ при 350 K осажден Yb с $l_{Yb} \approx 4 \text{ nm}$: I — после осаждения Yb; 2 - 43 h хранения в сухом воздухе.

На рис. 1 спектры 3 и 4 соответствуют образцу, полученному после осаждения на исходную пленку RbAg₄I₅ (спектры 1 и 1a) достаточно толстой пленки Sm [9]. После извлечения из вакуума образец показывает $\sigma \sim 10^{-2}\sigma_0$, единственный край поглощения 3.8 eV, а также UV-полосы поглощения 4.3 и 5.0 eV. Изменение оптической плотности в максимумах полос достигает $\sim 1/3$ фундаментального поглощения RbAg₄I₅. Картина рентгеновской дифракции образцов с краем поглощения 3.8 eV иная, чем у RbAg₄I₅. Отсутствует сильное отражение (110), появляется отражение с d = 7.14 Å, которое можно было бы отнести к (210) Rb₂AgI₃ [11], но отсутсвуют более сильные отражения (510), (121), (221) и (411) Rb₂AgI₃. Имеются также отражения с d = 3.72 Å и 3.36 Å, которым в RbAg₄I₅ : Sm отвечают отражения (221) и (311). Фаза с $\sigma \sim 10^{-2} \sigma_0$ существует, по-видимому, в некотором интервале концентраций RE. Рис. 1 показывает смещение края поглощения фазы в область 3.6 eV после 5 h хранения образца на воздухе. Одновременно в спектре $D(h\nu)$ появляется слабая особенность в области 3.3 eV, соответствующая краю поглощения RbAg₄I₅ : Sm. Через 4 дня хранения образца в сухом воздухе спектр $D(h\nu)$ показывает наличие $\sim 30\%$ RbAg₄I₅: Sm (параметр решетки 11.14 Å, $\sigma \sim 10^{-2}\sigma_0$). При этом отражение с d = 7.14 Å сменяется нерезким отражением с d = 7.35 Å, которое невозможно отнести к RbAg₄I₅, Rb₂Agl₃ или Agl. Появляется также слабое размытое отражение с $d = 7.92 \,\text{Å}$, которому отвечает отражение (110) RbAg₄I₅: Sm. Через 5 дней σ увеличивается до $\sim 7 \cdot 10^{-2} \sigma_0$, а параметр решетки RbAg₄I₅ : Sm до 11.16 Å. Отражение с d = 7.35 Å становится слабым и в последующем исчезает. Отражение (110) RbAg₄I₅:Sm напротив все время усиливается. Согласно данным $D(h\nu)$, край поглощения фазы с низким значением σ присутствует в спектре и через 8 дней эксперимента, когда параметр решетки RbAg₄I₅ : Sm возрастает до 11.19 Å, а σ — до 0.5 σ_0 . При увеличении в образце доли RbAg₄I₅: Sm полоса поглощения 2.4 eV в спектре $D(h\nu)$ не возникает. Однако высокие значения $D(h\nu)$, на уровне $\approx 0.2-0.3$ от скачка на края поглощения, сохраняются в области прозрачности SE. Поэтому можно предположить, что структурные превращения в образцах RbAg₄I₅-Sm сопровождаются образованием агрегатов точечных дефектов, включающих F-центры.

Рис. 5. Спектры $D(h\nu)$ образцов в системе RbAg₄I₅–Sm (293 K): 1 — исходная пленка RbAg₄I₅ с $l \approx 220$ nm; 2 — двухфазный образец: на RbAg₄I₅ при 350 K осажден Sm с $l_{\rm Sm} \approx 8$ nm; 3 — двухфазный образец, 10 дней хранения в сухом воздухе.

Рис. 6. Спектры $\Delta D_r(h\nu)$ двухфазного образца (рис. 5) и пленки RbAg₄I₅ ($l_{1,2} \approx 220$ nm) при 293 K: 1 — исходный двухфазный образец; 2 — 10 дней хранения в сухом воздухе; 3 — 30 дней хранения в сухом воздухе.

Некоторые типы твердофазных источников тока, электрохимических приборов и устройств содержат границу RbAg₄I₅/Ag. Поэтому в заключение раздела отметим различную стабильность допантов RbAg₄I₅: Ag (например, [13]) и $RbAg_4I_5$: RE относительно разложения на AgI и Rb₂AgI₃. Мы напыляли в вакууме на пленки $RbAg_4I_5$ с $l_1 = 100 \, nm$ и $l_2 = 200 \, nm$ пленки Ag одинаковой весовой толщины, $l_{\rm Ag} \approx 2\,{\rm nm}$. При этом в спектрах $D_r(h\nu)$ необратимо появлялась слабая полоса экситонного поглощения AgI (3.0 eV), соответствующая выделению этого соединения в образце с l₁. При $l_{\mathrm{Ag}} \sim 5\,\mathrm{nm}$ AgI присутствовал в обоих образцах, но в более тонком образце *l*₁ его концентрация достигала уже ~ 50%. Полученные данные указывают на противоположные знаки изменения свободной энергии SE при образовании допантов RbAg₄I₅:Ag и RbAg₄I₅:RE.

4. В работах [14–16] оптическую активность в $RbAg_4I_5$ (в области 2.9–3.0 eV) связывали с электронными переходами $4d^{10}-4d^95s$ в ионах Ag^+ . В действительности это были экситоны AgI. В [17–19] показано, что AgI почти всегда присутствует в образцах $RbAg_4I_5$.

Полосы сильного UV-поглощения в системах RbAg₄I₅-RE близки по энергии к линиям квадрупольных переходов $4d^{10}-4d^9s$ (${}^{1}S_0-{}^{1}D_2$, ${}^{3}D_{1,2,3}$) в свободных ионах Ag⁺ (4.9–5.8 eV). Возможна также аналогия с полосами слабого поглощения ("А".. "D") ЩГК, допированных серебром. Хвост сильного UV-поглощения RbAg₄I₅-RE может в таком случае соответствовать полосам "F", "G",...ЩГК:Ад. В ЩГК потеря ионами Ag+-центра инверсии в октаэдрических кластерах Ag+ (Hal⁻)₆ и частичное снятие запрета на оптические возбуждения 4d¹⁰-электронов возможны при динамической или статической асимметрии центров [20-28]. Одна из возможных причин асимметрии — структурный дефект в ближнем окружении иона Ag⁺ [22,26]. При увеличении ионных радиусов кристаллообразующих частиц и постоянной решетки поглощение и люминесценция Аg⁺-центров ЩГК испытывают красное смещение. Например, согласно [22], полоса поглощения "D" в NaCl (постоянная решетки 5.6 Å) имеет максимум в области 6.4 eV, а в KI (7.1 Å) максимум полосы приходится на 5.5 eV. Как отмечено выше, красный сдвиг UV-полос сильного поглощения в SE:RE может быть связан с увеличением параметра решетки.

В литературе отсутствуют какие-либо определенные данные о селективном оптическом возбуждении d^{10} -электронов CuHal и AgHal [29]. Согласно [30], у этих галоидов волновые функции валентной зоны формируются перемешиванием *p*-функций Hal и *d*-функций металла. В [29,31–33], по данным фотоэлектронной спектроскопии, делается вывод о *pd*-гибридизации валентной зоны в AgHal, а в [13,34] — о сильной динамической *pd*-гибридизации в AgCl, AgBr и RbAg₄I₅. Рост фундаментального поглощения в AgHal связывается с *pd*-гибридизацией валентной зоны [35]. Рис. 1 показывает, что фундаментальное поглощение RbAg₄I₅ возрастает в спектральном интервале 3.3–6 eV.

Для ЩГК энергетические уровни Ag⁺-центров рассчитаны в молекулярном приближении в [23]. Учитывались ковалентные связи конфигураций 4d¹⁰, 4d⁹5s и 4d⁹5p ионов Ag⁺ с p-электронами шести ближайших ионов Hal⁻ (см. также [27,28]). В элементарной ячейке RbAg₄I₅ 16 ионов Ag⁺ распределяются между 56 кристаллографическими позициями трех типов, в которых эти ионы имеют тетраэдрическое І-окружение [3]. Точечные дефекты в RbAg₄I₅ : Sm нарушают зонные состояния [10]. Поэтому в [11] делается предположение, что в серебро-галоидах RbAg₄I₅-RE возможны нарушения pd-гибридизации валентных зон и образование Ag⁺-центров, включающих в себя F-центр. Предполагается, что молекулярно-подобные орбитали таких центров ответственны за обнаруженные UV-полосы сильного поглощения.

Вопрос о возможном примесном происхождении особенностей 4.3 и 5.0 eV в исходных пленках RbAg₄I₅ относится к последующим работам. Заметим, что спектры рентгеновской флуоресценции при полном внешнем отражении, несущие информацию о составе поверхностного слоя толщиной ~ 5 nm, были получены для пленок RbAg₄I₅ на РФА ПВО-спектрометре ИПТМ РАН [36]. Показано присутствие в поверхностном слое исследуемых образцов суммарно $\approx 1\%$ посторонних элементов, в частности Fe, Cu, Br.

Авторы благодарны В.В. Аристову за внимание и поддержку научного направления, В.К. Егорову за получение данных рентгеновской флуоресценции на РФА ПВО-спектрометре.

Выражаем благодарность Российскому фонду фундаментальных исследований за поддержку работы грантами 95-02-06322a и 98-03-32739a.

Список литературы

- [1] B.B. Owens, J.K. Argue. Science 157, 3786, 308 (1967).
- [2] J.N. Bradley, P.D. Greene. Trans. Faraday Soc. 63, 424 (1967).
- [3] S. Geller. Science 157, 3786, 310 (1967).
- [4] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978). 792 с.
- [5] А.Л. Деспотули, Н.В. Личкова, Ф.И. Кукоз, В.Н. Загороднев. ФТТ 26, 8, 2214 (1984).
- [6] В.Н. Загороднев, Н.В. Личкова, Е.Б. Якимов. Изв. АН СССР. Сер. Неорг. матер. **23**, *9*, 1538 (1986).
- [7] А.Л. Деспотули. Информ. бюл. РФФИ 3, 51 (1995).
- [8] А.Л. Деспотули, Л.А. Деспотули. Сб. результатов МНТП России "Физика твердотельных наноструктур". ФИАН, М. (1996). 207 с.
- [9] А.Л. Деспотули, Л.А. Деспотули. ФТТ 39, 9, 1544 (1997).
- [10] А.Л. Деспотули. Инициативный проект. РФФИ № 98-03-32739а (1997).
- [11] L. Bonpunt, Y. Obaid, Y. Haget. J. Appl. Crystallogr. 10, 3, 203 (1977).
- [12] R.S. Bauer, B.A. Huberman. Phys. Rev. B13, 8, 3344 (1976).
- [13] А.В. Борис, С.И. Бредихин, Н.Н. Ковалева, Н.В. Личкова. ФТТ **31**, *4*, 47 (1989).
- [14] S. Radhakrishna, K. Hariharan, M.S. Jagadeesh. J. Appl. Phys. 50, 7, 4883 (1979).
- [15] K. Hariharan. J. Phys. D. Appl. Phys. 12, 11, 1909 (1979).
- [16] М.М. Афанасьев, В.Г. Гоффман, М.Е. Компан. ЖЭТФ 84, 4, 1310 (1983).
- [17] S. Shandra, V.K. Mohabey. J. Phys. D: Appl. Phys. 8, 576 (1975).
- [18] В.Н. Андреев, В.Г. Гоффман. ФТТ 25, 11, 3480 (1983).
- [19] И.Х. Акопян, Б.В. Новиков, Т.А. Павлова, С.А. Соболева. ФТТ 38, 8, 2406 (1996).
- [20] J.M. Conway, D.A. Greenwood, J.A. Krumhansl,
 W. Martienssen. J. Phys. Chem. Sol. 24, 2, 239 (1963).
- [21] F. Zeitz. Rev. Mod. Phys. 23, 4, 328 (1951).
- [22] K. Fussgaenger, W. Martienssen, H. Bilz. Phys. Stat. Sol. 12, 1, 383 (1965).
- [23] W. Dultz. Phys. Stat. Sol. 34, 1, 95 (1969).
- [24] K. Fussgaenger. Phys. Stat. Sol. 34, 1, 157 (1969).
- [25] Н.Е. Лущик, Ч.Б. Лущик. Опт. и спектр. 8, 6, 839 (1960).

- [26] Н.Е. Лущик, Т.А. Кукетаев. Опт. и спектр. 25, 6, 889 (1968).
- [27] Н.Н. Кристофель. Теория примесных центров малых ради-
- усов в ионных кристаллах. Наука, М. (1974). 336 с.
- [28] S. Emura, S. Masunaga. Phys. Rev. **B49**, *2*, 849 (1994).
- [29] F. Bassani, R.S. Knox, W.B. Fowler. Phys. Rev. 137, 4A, A1217 (1965).
- [30] M. Cardona. Phys. Rev. **129**, *1*, 69 (1963).
- [31] H. Takahashi, S. Tamaki, Y. Waseda. Sol. Stat. Ionics 31, 55 (1988).
- [32] J. Tejeda, N.J. Shevchik, W. Braun, A. Goldmann, M. Cardona. Phys. Rev. B12, 4, 1557 (1975).
- [33] M. Ostrov, A. Goldmann. Phys. Stat. Sol. 95b, 2, 509 (1979).
- [34] R.S. Bauer, W.E. Spicer. Phys. Rev. Lett. 25, 18, 1283 (1970).
- [35] M.G. Mason. Phys. Rev. B11, 12, 5094 (1975).
- [36] В.К. Егоров, А.П. Зуев, Б.А. Малюков. Изв. вузов. Цв. металлургия. 5, 54 (1997).