Влияние анизотропии поверхности постоянной энергии на термоэлектрическую эффективность твердых растворов *n*-Bi₂(Te,Se,S)₃

© В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 10 июля 1998 г.)

Проведено исследование термоэлектрических и гальваномагнитных свойств твердых растворов $Bi_2Te_{3-x-y}Se_xS_y$ *n*-типа при $0.12 \le x \le 0.36$, $0.12 \le y \le 0.21$ в интервале температур 80–300 К. Установлена корреляция между величиной термоэлектрической эффективности *Z* и параметрами многодолинной модели энергетического спектра с анизотропным рассеянием носителей заряда. Показано, что уменьшение анизотропии поверхности постоянной энергии и анизотропии рассеяния приводит к росту величины *Z* в твердых растворах при оптимальных концентрациях носителей заряда в твердом растворе.

В последние годы для решения ряда практических задач возникла необходимость достижения охлаждения термоэлектрическими методами до температур ниже 150 К. Поэтому разработка материалов, обладающих высокой термоэлектрической эффективностью (Z) в области указанных температур, в настоящее время особенно актуальна. В связи с этим представляет значительный интерес проведение детального анализа параметров, определяющих величину Z

$$Z \approx \mu_0 (m/m_0)^{3/2} / \kappa_L, \qquad (1)$$

где m — эффективная масса плотности состояний, μ_0 — подвижность носителей заряда с учетом вырождения, κ_L — теплопроводность кристаллической решетки.

Входящие в выражение (1) величины связаны с параметрами поверхности постоянной энергии и процессами рассеяния носителей заряда, что позволяет установить зависимость между термоэлектрической эффективностью, этими параметрами и процессами рассеяния при изменении температуры, концентрации носителей и состава твердого раствора.

Исследования поверхности постоянной энергии наиболее полно проведены для n-Bi₂Te₃, как в слабых [1–4,5], так и в сильных магнитных полях [6,7]. Для твердых растворов n-типа на основе Bi₂Te₃ исследования проводились в Bi₂Te_{3-x}Se_x ($x \le 0.1$; x > 0.8) с помощью эффекта Шубникова–де Гааза [8], а также авторами настоящей работы для твердых растворов n-Bi_{2-x}Sb_xTe_{3-y}Se_y в слабых магнитных полях для изотропного [9] и в Bi_{2-x}In_xTe₃ для анизотропного механизма рассеяния носителей заряда [10]. Однако влияние изменений поверхности постоянной энергии на величину термоэлектрической эффективности Z ранее не рассматривалось.

1. Гальваномагнитные эффекты

Твердые растворы n-Bi₂(Te,Se,S)₃ относятся к кристаллам ромбоэдрической сингонии с пространственной группой $R\bar{3}m$ и обладают сильной анизотропией кинети-

ческх эффектов, что связано с особенностями кристаллической структуры и характером химических связей. Для описания поверхности постоянной энергии исследуемых твердых растворов на основе Bi_2Te_3 используется многодолинная модель энергетического спектра, в которой установлена связь между компонентами тензоров сопротивления ρ_{ii} , эффекта Холла ρ_{ijk} , магнетосопротивления ρ_{ijkl} и параметрами, определяющими форму эллипсоидов постоянной энергии *u*, *v*, *w* [1,3]

$$\frac{\rho_{312}}{\rho_{123}} = \frac{(w+uv)(1+u)}{4uv},\tag{2}$$

$$\frac{\rho_{11}\rho_{1133}}{\rho_{123}^2} = \frac{1+u^2}{4u\beta} - 1,$$
(3)

$$\rho_{11}\rho_{1122}/\rho_{123}^2 = \frac{(3w + uw + uv + 3u^2v)(1+u)}{16\beta u^2} - \frac{2v}{a^2(1+u)},$$
(4)

$$\rho_{11}\rho_{1111}/\rho_{123}^2 = (w - 5uw + 3uv + u^2v)(1 + u/16\beta u^2),$$
(5)

где $a = \rho_{312}/\rho_{123}$.

Параметры u, v, w связаны с компонентами тензора обратных эффективных масс $\stackrel{\leftrightarrow}{\alpha}$

$$u = \alpha_{11}/\alpha_{22}, \quad v = \alpha_{33}/\alpha_{22}, \quad v - w = \alpha_{23}/\alpha_{22}.$$
 (6)

Угол поворота главных осей эллипсоидов постоянной энергии относительно кристаллографических осей определен следующим образом:

$$tg 2\theta = 2\alpha_{23}/(\alpha_{22} - \alpha_{33}).$$
(7)

Параметр вырождения β имеет вид

$$\beta = \frac{I_1^2}{I_0 I_2}$$

$$I_n = \left(\frac{e}{m}\right)^n \frac{e^2}{3\pi^2 m} \left(\frac{2m}{\pi^2}\right)^{3/2} \frac{1}{|\alpha_{ij}|^{1/2}} \int_0^\infty \tau^{n+1} \varepsilon^{3/2} \frac{\partial f_0}{\partial \varepsilon} d\varepsilon.$$
(8)

Puc. 1. Температурные зависимости отношений ρ_{312}/ρ_{123} (*I*-9) и $\rho_{11}\rho_{1133}/\rho_{123}^2$ (*I*0-*I*7) в твердых растворах Bi₂Te_{3-x}Se_x и Bi₂Te_{3-y}Sy. *n*, 10¹⁹ cm⁻³: (*x* = 0.12) *I*, *I*0 — 0.25, 2, *II* — 0.9, 3, *I*2 — 3; (*x* = 0.3) 4, *I*3 — 0.35, 5, *I*4 — 1.5; (*y* = 0.12) 6 — 0.7, 7, *I*5 — 1.8; (*y* = 0.21) 8, *I*6 — 0.5, 9, *I*7 — 2.6.

На рис. 1 представлены температурные зависимости ρ_{312}/ρ_{123} (кривые 1-9) и $\rho_{11}\rho_{1133}/\rho_{123}^2$ (кривые 10-17), измеренные в слабых магнитных полях на монокристаллических образцах твердых растворов Bi₂Te_{3-x}Se_x и Bi₂Te_{3-y}S_y *n*-типа при x = 0.12, 0.3 и y = 0.12, 0.21. Из выражения (2) следует, что изменения ρ_{312}/ρ_{123} от концентрации носителей заряда и температуры определяются только изменением u, v, w и не зависят от механизма рассеяния. Изменения отношений ρ_{312}/ρ_{123} от концентрации носителей указывают на необходимость применения двухзонной модели энергетического спектра [3,4], поскольку в рамках однозонной модели эти отношения остаются постоянными.

Как следует из выражений (3)–(5), соотношения $\rho_{ii}\rho_{ijkl}/\rho_{ijk}^2$ определяются не только величинами (*u*, *v*, *w*), но также зависят от вида времени релаксации τ , поэтому изменения этих соотношений обусловлены действием двух причин: влиянием второй зоны и анизотропией рассеяния носителей. Соотношения (3)–(5) имеют идентичные температурные и концентрационные зависимости, поэтому далее рассматривается только отношение $\rho_{11}\rho_{123}^2$.

Известно, что заполнение второй зоны в зоне проводимости твердых растворов на основе Bi2Te3 происходит при концентрациях носителей $n \approx 3 \cdot 10^{18} \,\mathrm{cm}^{-3}$ [3–5]. Поэтому слабое увеличение отношений $\rho_{11}\rho_{1133}/\rho_{123}^2$ при низких n (кривая 10 на рис. 1), где еще нет влияния дополнительной зоны, может быть связано с анизотропией рассеяния носителей заряда в основной зоне. С ростом концентрации носителей отношения $\rho_{11}\rho_{1133}/\rho_{123}^2$ возрастают, что объясняется влиянием межзонного рассеяния из-за присутствия второй дополнительной зоны, а также вследствие анизотропии рассеяния носителей заряда (кривые 11, 14, 16 на рис. 1). Различный вклад этих эффектов при дальнейшем повышении концентрации носителей может приводить к изменению вида температурной зависимости отношения $\rho_{11}\rho_{1133}/\rho_{123}^2$ (кривые 12, 15, 17 на рис. 1).

2. Эффективная масса и подвижность в модели с изотропным рассеянием

При анализе параметров материалов, определяющих термоэлектрическую эффективность, как правило, не учитывают особенности сложной зонной структуры и механизмов рассеяния. В такой модели рассеяние носителей заряда изотропно и описывается скалярным временем релаксации, зависящим только от энергии в виде степенной функции

$$\tau = \tau_0 E^r,\tag{9}$$

где τ_0 — множитель, не зависящий от энергии, r параметр рассеяния для акустического механизма рассеяния, являющегося основным в рассматриваемых материалах, r = -0.5. Поверхность постоянной энергии в этом случае является сферической и ей соответствует усредненная эффективная масса плотности состояний m/m_0 . Особенности зонной структуры и механизмов рассеяния при расчетах эффективной массы (m/m_0) , концентрации (n) и подвижности (μ_0) могут быть учтены с помощью эффективного параметра рассеяния $r_{\rm eff}$ [11]. Определение μ_0 и m/m_0 из экспериментальных данных по электропроводности (σ) и коэффициенту термоэдс (α) для $r_{\rm eff}$ проводилось в соответствии с выражениями для концентрации и подвижности носителей заряда, применимыми для полупроводника в области примесной проводимости [12].

Концентрация носителей, необходимая для расчета μ_0 и m/m_0 в анизотропных материалах, определялась в виде

$$n = A(r_{\rm eff}, \eta) B / \rho_{ijk} e, \qquad (10)$$

где η — приведенный уровень Ферми, $A(r_{\text{eff}}, \eta)$ — Холлфактор, B — параметр анизотропии

$$B = \left[(\rho_{11}\rho_{1133}/\rho_{123}^2 + 1)\beta(r_{\text{eff}},\eta) \right]^{-1}.$$
 (11)

Уровень Ферми η вычислялся из зависимостей коэффициента термоэдс α , рассчитанных для различных

Рис. 2. Зависимость коэффициента термоэдс α от концентрации носителей в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ и $\text{Bi}_2\text{Te}_{3-y}\text{S}_y$ при 300 (*1*–6) и 77 K (*7*–*12*). *х*: *1*, 7 — 0.12, *2*, 8 — 0.21, *3*, 9 — 0.3, *4*, *10* — 0.36. *у*: *5*, *11* — 0.12, *6*, *12* — 0.21.

Рис. 3. Температурная зависимость подвижности μ_0 в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ и $\text{Bi}_2\text{Te}_{3-y}\text{S}_y$. *n*, 10^{19} cm⁻³: (x = 0.12) 1 - 0.25; (x = 0.3) 2 - 0.35, 3 - 0.65; (x = 0.36) 4 - 0.35, 5 - 0.9; (y = 0.12) 6 - 0.4, (y = 0.21) 7 - 1.8.

Рис. 4. Температурные зависимости эффективной массы плотности состояний m/m_0 (*1-10*) и термоэлектрической эффективности *Z* (*11–17*) в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ и $\text{Bi}_2\text{Te}_{3-y}\text{S}_y$. *n*, 10^{19} сm⁻³: (x = 0.12) *1*, *11* — 0.25, *2* — 0.8; (x = 0.21) *3* — 0.8; (x = 0.3) *4*, *12* — 0.35, *13* — 0.65; (x = 0.36) *5*, *14* — 0.35, *6*, *15* — 0.9; (y = 0.12) *7* — 0.4, *8*, *16* — 0.7; (y = 0.21) *9* — 0.7, *10*, *17* — 1.8.

значений $r_{\rm eff}$ в соответствии с [13]. На рис. 2 приведена концентрационная зависимость коэффициента термоэдс α в исследованных твердых растворах при 300 и 77 К. Для Bi₂Te_{3-x-y}Se_xS_y при 300 К α имеет одинаковую зависимость от концентрации при y = 0 и изменении xот 0.12 до 0.36 (точки 1-4). При x = 0, y = 0.12, 0.21 зависимость $\alpha = f(n)$ ослабевает (точки 5, 6). При 77 К также наблюдается ослабление $\alpha = f(n)$ при y = 0.12, 0.21 (точки 11, 12) и, кроме того, при x = 0.12(точки 7).

На рис. 3, 4 представлены характерные температурные зависимости величин μ_0 и m/m_0 для Bi₂Te_{3-x}Se_x и Bi₂Te_{3-x}Sy. Изменение концентрации носителей *n* достигалось при введении избыточного Те по сравнению со стехиометрическим составом твердого раствора. Величина μ_0 и угловые коэффициенты $|s| = dln\mu_0/dlnT$ уменьшались с ростом *n* и *x* в твердом растворе вследствие

увеличения числа рассеивающих центров. Для низкотемпературной области (80 K < T < 150 K) при низких концентрациях носителей $n = (0.25-0.35) \cdot 10^{19} \text{ cm}^{-3}$ величины |s| уменьшаются от 1.7 до 1.3 при росте x от 0.12 до 0.36. В твердом растворе при y = 0.12 и 0.21 величины |s| уменьшаются от 1.6 до 0.8 соответственно. Уменьшение угловых коэффициентов в твердом растворе Bi₂Te_{3-y}S_y по сравнению с Bi₂Te_{3-x}Se_x обусловлено существенно бо́льшими искажениями, вносимыми атомами S, чем атомами Se при замещениях атомов Te в кристаллической решетке Bi₂Te₃.

Из зависимостей эффективной массы m/m_0 от температуры (кривые 1-10 на рис. 4) следует, что m/m_0 увеличивается с ростом *n* при сравнении образцов с одинаковым содержанием второго компонента, что объясняется влиянием второй дополнительной зоны, характеризующейся большей эффективной массой, чем в основной зоне (кривые 1, 2 и 5, 6 на рис. 4). С увеличением x и y в твердом растворе величина m/m_0 возрастает в образцах с близкими концентрациями носителей (кривые 1, 4 и 5, 2и 3, 8 и 9). Такие изменения m/m_0 в зависимости от состава твердого раствора согласуются с величиной ширины запрещенной зоны E_g , так как с ростом x и y в твердом растворе величина E_g возрастает [14].

Следует отметить, что в твердых растворах при x = 0.3 и 0.36 в области низких температур m/m_0 возрастает с уменьшением температуры. Такая зависимость m/m_0 от T при концентрациях носителей $n = 0.35 \cdot 10^{19} \,\mathrm{cm}^{-3}$ приводит к росту термоэлектрической эффективности Z (кривые 12, 14 на рис. 4), особенно при низких температурах. Приведенная концентрация носителей является оптимальной для низкотемпературной области и близка к концентрации, при которой происходит заполнение второй зоны в зоне проводимости твердых растворов на основе Ві2Те3. Наибольшее увеличение Z наблюдалось в твердом растворе $Bi_2Te_{3-x}Se_x$ при x = 0.3 (кривая 12 на рис. 4) для низких температур. При x = 0.3 происходит компенсация снижения подвижности (кривая 2 на рис. 3) по сравнению с x = 0.12 (кривая 1 на рис. 3) не только в связи с ростом m/m_0 с увеличением x в твердом растворе, но и из-за дополнительного роста m/m_0 с уменьшением температуры вследствие увеличения вклада примесного рассеяния. В твердом растворе при (x = 0.36) (кривая 14 на рис. 4) также наблюдалась высокая термоэлектрическая эффективность при низких Т. Однако уменьшение подвижности не было полностью скомпенсировано ростом эффективной массы (кривая 4 на рис. 3). Уменьшения теплопроводности кристаллической решетки κ_L , наблюдавшегося в Bi₂Te_{3-x}Se_x с ростом концентрации атомов Se, участвующих в образовании твердого раствора [15], также недостаточно для увеличения Z. Для более высоких концентраций носителей при x = 0.36 (кривая 6 на рис. 4) и y = 0.21(кривые 9, 10 на рис. 4), где m/m_0 также возрастает при низких температурах, соответствующие значения эффективности Z (кривые 14, 16 на рис. 4) уменьшались вследствие уменьшения подвижности.

3. Анизотропное рассеяние

Анизотропия кинетических свойств твердых растворов на основе Bi₂Te₃, обусловленная анизотропией упругих колебаний кристалла, приводит к необходимости учета анизотропии механизма рассеяния носителей заряда. Поэтому наиболее корректной моделью поверхности постоянной энергии является многодолинная модель энергетического спектра, в которой рассеяние описывается в виде тензора $\stackrel{\leftrightarrow}{\tau}$ (в выражении (9) τ_0 заменяется на τ_{0ij}). Изменения в формулах для гальваномагнитных коэффициентов, полученных без учета анизотропии рассеяния, сводятся к замене компонентов тензора обратных эффективных масс α_{ij} на матричные произведения ($\alpha \tau$)_{ij} [16,17].

В настоящей работе используется ориентация декартовой системы координат по отношению к кристаллографическим осям [3,4,6,18], когда ось Z или (3) направлена по оси третьего порядка (C), оси X(1) — вдоль осей второго порядка (бинарные направления $\langle 2\bar{1}\bar{1}0 \rangle$), оси Y(2) — лежат в плоскостях отражения (биссекторные направления $\langle 10\bar{1}0 \rangle$).

В соответствии с [4] соотношения между компонентами тензора $\stackrel{\leftrightarrow}{\alpha}$ для анизотропного и изотропного времени релаксации с учетом принципа симметрии Онзагера имеют вид

$$\alpha'_{11} = \gamma_1, \quad \alpha'_{22} = c^2 \gamma_2 + s^2 \gamma_3,$$
 (12)

$$\alpha'_{33} = s^2 \gamma_2 + c^2 \gamma_3, \tag{13}$$

$$\alpha'_{23} = sc(\gamma_2 - \gamma_3) + (c^2 - s^2)\gamma_4, \tag{14}$$

где

 $\gamma_1 = \alpha_1 \tau_{11}, \ \gamma_2 = \alpha_2 \tau_{22}, \ \gamma_3 = \alpha_3 \tau_{33}, \ \gamma_4 = \alpha_2 \tau_{23}, \ (15)$

$$c = \cos \theta$$
, $s = \sin \theta$.

Из системы уравнений (12)–(14) с учетом выражения (6) имеем

$$\gamma_2/\gamma_1 = (c^2 + s^2 v)/u + 2sc(v - w)^{1/2}u,$$
 (16)

$$\gamma_3/\gamma_1 = \left(s^2 + c^2 v - 2sc(v - w)^{1/2}\right)/u, \qquad (17)$$

$$\gamma_4/\gamma_1 = \left(-sc(1-v) + (c^2 - s^2)(v-w)^{1/2}\right)/u.$$
 (18)

Как следует из рис. 5, отношения γ_i/γ_j , рассчитанные из выражений (15), (16)–(18), зависят от концентрации носителей заряда. Необходимо отметить, что наблюдается значительное увеличение отношения γ_2/γ_1 (более, чем в 10 раз) при сравнении образца, имеющего низкую концентрацию носителей ($n = 0.25 \cdot 10^{19} \text{ cm}^{-3}$), при которой еще не началось заполнение второй зоны в зоне проводимости твердого раствора $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ (кривая *I* на рис. 5), и образцов с более высокими концентрациями ($n > 0.35 \cdot 10^{19} \text{ cm}^{-3}$). Затем происходит увеличение отношений γ_2/γ_1 с ростом концентрации носителей. Далее для наиболее высоких концентраций носителей, как

Puc. 5. Температурные зависимости отношений матричных произведений γ_i/γ_j в твердых растворах $\text{Bi}_2\text{Te}_{3-x}\text{Se}_x$ и $\text{Bi}_2\text{Te}_{3-y}\text{Sy.}$ *n*, 10^{19} cm⁻³: γ_2/γ_1 , (x = 0.12) *I* — 0.25, *2* — 1.5, *3* — 3; (x = 0.3) *4* — 0.35, *5* — 1; (y = 0.12) *6* — 1.8; (y = 0.21) *7* — 0.4, *8* — 2.6. γ_3/γ_1 , (x = 0.12) *9* — 0.25, *IO* — 1.5; (x = 0.3) *II* — 0.35, *I2* — 1; (y = 0.12) *I3* — 1.8; (y = 0.21) *I4* — 0.4, *I5* — 2.6. γ_4/γ_1 , (x = 0.12) *I6* — 0.25; (x = 0.3) *I7* — 0.35; (y = 0.21) *I8* — 0.4.

и для отношений $\rho_{11}\rho_{1133}/\rho_{123}^2$ (кривые 12, 17 на рис. 1), наблюдалось снижение величин γ_i/γ_j по сравнению с более низкими концентрациями носителей (кривые 2 и 3 на рис. 5) для твердого раствора Bi₂Te_{3-x}Se_x и для Bi₂Te_{3-y}S_y (кривые 7 и 8 на рис. 5). Такой характер зависимости $\gamma_i/\gamma_j = f(n)$ можно объяснить тем, что зазор между зонами в зоне проводимости твердого раствора уменьшается с увеличением концентрации носителей [8] и в области высоких концентраций зоны перекрываются, что проявляется в изменении зависимости γ_2/γ_1 от *n*. Отношения γ_i/γ в твердом растворе Bi₂Te_{3-y}Sy выше, чем в Bi₂Te_{3-x}Se_x при сравнении образцов с близкими значениями концентрации носителей и содержанием атомов Se и S в твердом растворе (кривые 4 и 7 на рис. 5).

Поскольку отношения γ_i/γ_j зависят как от α_i/α_j , так и от τ_{ij}/τ_{ii} , концентрационная зависимость γ_i/γ_j может быть связана не только с возрастанием анизо-

Puc. 6. Температурные зависимости отношений компонентов тензора времени релаксации τ_{ij}/τ_{ii} в твердых растворах Bi₂Te_{3-x}Se_x и Bi₂Te_{3-y}Sy. *n*, 10¹⁹ cm⁻³: (τ_{22}/τ_{11}), (x = 0.12) I = 0.25, 2 = 0.6, 3 = 1; (x = 0.3) 4 = 0.35, 5 = 1; (y = 0.12) 6 = 0.7; (y = 0.21) 7 = 0.4. (τ_{33}/τ_{11}), (x = 0.12) 8 = 0.25, 9 = 0.6, 10 = 1; (x = 0.3) 11 = 0.35, 12 = 1.5; (y = 0.12) 13 = 0.7; (y = 0.21) 14 = 2.6. (τ_{23}/τ_{11}), (x = 0.12) 15 = 1.5; (x = 0.3) 16 = 1.5; (y = 0.12) 17 = 0.7.

тропии поверхности постоянной энергии исследуемых твердых растворов (кривые 4, 5 и 7, 8 на рис. 5), но и с изменением анизотропии рассеяния. Величины γ_i/γ_i были использованы для расчета отношений компонентов тензоров обратных эффективных масс α_i/α_i и времени релаксации τ_{ii}/τ_{ii} . Определение отношений τ_{ii}/τ_{ii} из данных по гальваномагнитным коэффициентам, измеренным только в слабом магнитном поле, допустимо, если использовать предположение о том, что при комнатной температуре рассеяние носителей заряда близко к изотропному, что возможно вследствие компенсации анизотропии рассеяния фононов анизотропией их энергетического спектра [2,16,17]. В области низких температур вклад примесного рассеяния возрастает, причем компенсация анизотропии рассеяния фононов нарушается, что приводит к необходимости учета анизотропного рассеяния. При расчете отношений компонентов тензора

Отношения компонентов	тензоров	обратных	эффектин	вных масс
α_i/α_i в твердых раствор	ax Bi ₂ Te ₃ .	_xSe _x и Bi	$_2 Te_{3-v}S_v$ I	три 77 K

$Bi_2Te_{3-x-y}Se_xS_y$						
x	У	$n, 10^{19} \mathrm{cm}^{-3}$	$lpha_2/lpha_1$	α_3/α_1		
0.12	0	0.25	0.12	0.16		
		0.6	30.6	0.18		
		1	35.5	0.32		
		1.5	20.3	0.29		
		3	5.6	0.06		
0.3	0	0.35	8	0.18		
		1	7	0.2		
		1.5	6.3	0.15		
0	0.12	0.7	15.5	0.38		
		1.8	8.3	0.34		
0	0.21	0.4	21.9	0.15		
		2.6	8.5	0.04		

 $\overleftarrow{\alpha}$ использовалось предположение об отсутствии температурной зависимости α_i/α_j .

Из зависимостей отношений au_{ij}/ au_{ii} от температуры (рис. 6) следует, что в области низких концентраций и температур в твердом растворе $Bi_2Te_{3-x}Se_x$ (кривые 1, 9 и 4, 11 на рис. 6) τ_{22}/τ_{11} и τ_{33}/τ_{11} имеют близкие значения, что указывает на изотропность рассеяния в плоскости отражения. В твердом растворе при (x = 0.3) рассеяние близко к изотропному как в биссекторных, так и в бинарных направлениях (кривая 4 на рис. 6). В твердых растворах $Bi_2Te_{3-x}Se_x$ (x = 0.12) и $Bi_2Te_{3-y}S_y$ (у = 0.21) при низких концентрациях носителей анизотропия τ_{22}/τ_{11} более высокая, причем при x = 0.12(кривая 1 на рис. 6) время релаксации возрастает в биссекторных направлениях, в то время как при y = 0.21(кривая 7 на рис. 6) — в бинарных направлениях, вследствие различия рассеяния на атомах Se и S, как отмечалось при обсуждении изменений угловых коэффициентов температурных зависимостей подвижности. Более высокой анизотропией механизма рассеяния и поверхности постоянной энергии можно объяснить низкую величину термоэлектрической эффективности в твердом растворе $Bi_2Te_{3-v}S_v$ (кривая 7 на рис. 4).

С ростом концентрации носителей отношения τ_{ij}/τ_{ii} уменьшаются и время релаксации в бинарных направлениях возрастает (кривые 1–3, 4 и 5, 7 и 6 на рис. 6). С увеличением содержания атомов Se и S в твердом растворе анизотропия τ также увеличивается вдоль бинарных направлений (кривые 1, 4 и 9, 12 на рис. 6). Отношения γ_{23}/γ_{11} , отвечающие за примесное рассеяние [4], возрастают в твердом растворе при x = 0.3 (кривыя 17 на рис. 5) по сравнению с x = y = 0.12 (кривые 16, 18 на рис. 5). С ростом концентрации носителей отношения τ_{ij}/τ_{ii} уменьшаются, что указывает на увеличение времени релаксации также вдоль бинарных направлений. Отношения α_i/α_j (таблица), рассчитанные из данных по γ_i/γ_j , зависят от концентрации носителей таким образом, что анизотропия поверхности постоянной энергии возрастает с увеличением концентрации носителей и содержанием атомов Se и S, участвующих в образовании твердого раствора. Полученные величины находятся в согласии с имеющимися данными для α_i/α_i в *n*-Bi₂Te₃ [4].

Таким образом, в результате исследований термоэлектрических и гальваномагнитных эффектов в твердых растворах Bi₂Te_{3-x-y}Se_xS_y в рамках многодолинной модели было показано, что наибольшее увеличение термоэлектрической эффективности при низких температурах наблюдается в Bi₂Te_{3-x}Se_x (x = 0.3), обладающем слабой анизотропией поверхности постоянной энергии и механизмов рассеяния носителей заряда. Оптимальная концентрация носителей $n \cong 0.35 \cdot 10^{19} \text{ cm}^{-3}$, при которой анизотропия наиболее слабая, близка к концентрации заполнения второй зоны в зоне проводимости твердого раствора Bi₂Te_{3-x}Se_x (x = 0.3).

Список литературы

- J.R. Drabble, R.D. Groves, R. Wolfe. Proc. Phys. Soc. 71, 3, 430 (1958).
- [2] Б.А. Ефимова, В.И. Новиков, А.Г. Остроумов. ФТТ 4, 1, 302 (1962).
- [3] L.P. Caywood, G.R. Miller. Phys. Rev. B2, 8, 3210 (1970).
- [4] H.A. Ashworth, J.A. Rayne, R.W. Ure. Phys. Rev. B3, 8, 2646 (1971).
- [5] H. Kaibe, Y. Tanaka, M. Sakata, I. Nishida. J. Phys. Chem. Sol. 50, 9, 945 (1989).
- [6] H. Köhler. Phys. Stat. Sol. (b) 73, 1, 95 (1976).
- [7] R.B. Malinson, J.A. Rayne, R.W. Ure. Phys. Rev. 175, 3, 1049 (1968).
- [8] H. Köhler, W. Haigis, A. Middendorff. Phys. Stat. Sol. (b) 78, 637 (1976).
- [9] V.A. Kutasov, L.N. Luk'yanova. Phys. Stat. Sol. (b) 154, 669 (1989).
- [10] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 32, 2, 488 (1990).
- [11] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 26, 8, 2501 (1984).
- [12] А.И. Ансельм. Введение в теорию полупроводников. Наука, М. (1978). 615 с.
- [13] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 28, 3, 899 (1986).
- [14] D.L. Greenaway, G.J. Harbeke. Phys. Chem. Sol. 26, 1585 (1965).
- [15] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 38, 8, 2366 (1996).
- [16] G. Herring, E. Vogt. Phys. Rev. 101, 3, 944 (1956).
- [17] И.Я. Коренблит. ФТТ 2, 12, 3083 (1960).
- [18] L.R. Testardi, E. Burstein. Phys. Rev. B6, 2, 460 (1972).