Инварный эффект и фазовые переходы в кристаллах Cs₂Znl₄

© Б.Ш. Багаутдинов, В.Ш. Шехтман

Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Московская обл., Россия E-mail: bagautdi@issp.ac.ru

(Поступила в Редакцию 29 мая 1998 г.)

Проведены рентгенодифракционные исследования in situ кристаллов Cs₂ZnI₄ в температурном интервале 4.2–300 К. Измерения параметров решетки показали три аномалии, соответствующие фазовым переходам. В области несоразмерной и соразмерной модулированных фаз 120–96 К обнаружено обращение в нуль коэффициента термического расширения вдоль оси *с* (инварный эффект). Обсуждается возможная кристаллогеометрическая модель, связывающая модулированные смещения атомов с инварным эффектом.

Известно, что кристаллы с несоразмерной фазой (НСФ) могут обнаруживать специфические аномалии температурной зависимости термического расширения вплоть до обращения коэффициента термического расширения (КТР) в нуль в определенных направлениях. Такая особенность, названная инварным эффектом, была обнаружена для НСФ в кристаллах прустита (Ag₃AsS₃) [1], селеногиподифосфата олова (Sn₂P₂Se₆) [2], тиомочевины (SC(NH₂)₂) [3,4]. Природа этого интересного эффекта остается до сих пор неясной, что стимулирует дальнейшие исследования особенностей поведения параметров решетки в кристаллах с НСФ при изменении температуры [5]. В этом плане представляют интерес соединения семейства A_2BX_4 (A = Rb, K, Cs, ..., B = Zn, Co, Hg, ..., $X = Cl, Br, I, ...), \kappa$ которым относятся большинство известных к настоящему времени диэлектрических кристаллов с НСФ [6]. Кристаллы Cs₂ZnI₄ принадлежат к структурному типу *β*-К₂SO₄; параметры решетки a = 10.84 Å, b = 8.29 Å, c = 14.45 Å и пространственная группа Рпта при комнатной температуре были определены в работе [7]. Отметим, что решетка Cs₂ZnI₄ аналогично многим кристаллам семейства А2ВХ4 характеризуется "псевдогексагональным" соотношением параметров $c \approx b\sqrt{3}$. Установлено, что при высоких температурах соединения типа β -K₂SO₄ характеризуются (иногда виртуально) гексагональной группой Р63/ттс [8].

Фазовые переходы в кристаллах Cs₂ZnI₄ явились предметом ряда работ. Диэлектрические [9,10], ЯМР [11], рентгенодифрактометрические [12] и дилатометрические [13] измерения, показали, что ниже комнатной температуры Cs₂ZnI₄ претерпевает последовательность фазовых переходов: $Pnma(Z = 4, T_i = 120 \text{ K})$ HCФ ($T_c = 108 \text{ K}$) $P2_1/m(Z = 8)$ (либо $P2_1/n$ (T = 96 K) $P\bar{1}(Z = 4)$).

Оптические и калориметрические измерения обнаружили дополнительные аномалии в окрестности 104 К и поэтому была предложена последовательность с фазовым переходом при этой температуре (см. [14,15]) $Pnma(Z = 4, T_i = 117 \text{ K}) \text{ HC}\Phi(T_c = 108 \text{ K}) P2_1/n(Z = 8, T_1 = 104 \text{ K})P1(Z = 4, T_2 = 96 \text{ K}) P\overline{1}(Z = 4)$. Термодинамическое описание несоразмерной фазы в Cs₂ZnI₄ рассмотрено в работах [16,17].

Отметим, что структурные аспекты фазовых превращений в $C_{s_2}ZnI_4$ изучены пока недостаточно. Температурное поведение параметров решетки, которое является одним из чувствительных индикаторов фазовых переходов, до сих пор для $C_{s_2}ZnI_4$ систематически не изучалось. Не проведен полный структурный анализ фаз, не установлена природа модуляций, имеется неопределенность относительно последовательности фазовых переходов и пространственной группы моноклинной фазы $P2_1/m$ или $P2_1/n$.

В этой связи нами было предпринято детальное дифрактометрическое исследование монокристаллических образцов Cs_2ZnI_4 в широком интервале температур до гелиевой включительно.

1. Эксперимент

Образцы кристаллов Cs₂ZnI₄ были выращены из водного раствора при 313 К [11]. Температурные измерения производились на монокристальных, оптически прозрачных срезах (100), (010) и (001) размером $2.0 \times 1.5 \times 0.3$ mm; использовался гелиевый криостат производства ИФТТ РАН; температура контролировалась с точностью не хуже чем 0.1 К [18]. Съемки велись на дифрактометре SIEMENS D500, приспособленном для двухкружных исследований монокристаллов; использовалось СиКа-излучение. Измерения межплоскостных расстояний были проведены по центрам тяжести брэгговских отражений (12,0,0), (дифракционный угол $\theta \approx 58.6^{\circ}$), (0,10,0) ($\theta \approx 69.6^{\circ}$), (0,0,18) ($\theta \approx 71^{\circ}$), записанных по схеме $2\theta/\theta$. Индексы отражений приводятся в осях исходной Рпта-фазы. Выбор рефлексов с большими углами дифракции позволил достичь относительной точности не хуже 1.5 · 10⁻⁴. Перед каждой записью профиля интенсивности рефлекса образец термостатировался $\sim 10 \,\mathrm{min}$ при заданной температуре. Анализ конфигурации обратной решетки проводился сканированием по плоскостям (a^*b^*0) , $(0b^*c^*)$, (a^*0c^*) . В программе сканирования по неискаженной сетке обратной решетки (д-сканирование) использовались измеренные предварительно параметры решетки кристалла.

2. Результаты и обсуждение

1) Температурные измерения. При комнатной температуре кристалл Cs₂ZnI₄ характеризовался параметрами решетки a = 10.835(9) Å, b = 8.310(3) Å, c = 14.469(5) Å. В соответствии с пространственной группой *Рпта* наблюдались погасания рефлексов, соответствующие скользящим плоскостям a: hk0: h = 2n + 1и n: 0k1: k + 1 = 2n + 1. На рис. 1 представлены температурные зависимости межплоскостных расстояний d(T) для направлений [100], [010] и [001]. Графическим дифференцированием кривых d(T) были определены значения КТР, соответствующие областям существования наблюдаемых фаз (табл. 1). Рассмотрим последовательно наблюдаемые температурные эффекты.

Таблица 1. КТР в температурных интервалах четырех низкотемпературных фаз $Cs_2ZnI_4\ (\times 10^{-5}\,K^{-1})$

Температурный интервал	$lpha_{100}$	$lpha_{010}$	$lpha_{001}$
<i>Pnma</i> 300–120 K	3.1	5.5	6.2
Incommensurate 120–108 K	9.7	6.1	pprox 0
$P21/m \ 108-97 \mathrm{K}$	4.2	4.97	pprox 0
<i>P</i> -1 96–20 K	2.0	7.06	0.52

В температурной области от комнатной до 120 К наблюдается приблизительно линейный характер изменений ячейки вдоль осей a, b, c. Проведен анализ систематических погасаний рефлексов; во всем температурном интервале сохраняются указанные выше условия для *Pnma*-фазы. В окрестности (~ 270 K) дифракционные особенности, подтверждающие предполагаемый в [19] фазовый переход, не были обнаружены.

Переходу нормальная-несоразмерная фаза при $T_i = 120 \, {\rm K}$ соответствуют изломы на кривых d(T) и скачкообразные изменения в КТР, что согласуется со вторым родом этого фазового перехода. Модуляция фиксируется структуры в интервале 120-108 K появлением сателлитных рефлексов в плоскости (a^*b^*0) [12]. Позиции сателлитов можно описать волновым вектором $\mathbf{q} = (1/2 + \delta)\mathbf{a}^*$ в расширенной или же $1 - \mathbf{q} = (1/2 - \delta)\mathbf{a}^*$ в нормальной зонах Брюллюэна (рис. 2). Температурная зависимость q(T), указывающая на несоизмеримость модуляций приведена на рис. 3, а. В области НСФ условия погасания для брэгговских рефлексов не отличаются от исходной Рпта-фазы; при этом дополнительные рефлексы сателлиты первого порядка располагаются вокруг позиций запрещенных рефлексов hk0: k = 2n + 1 В четырехмерном представлении этому (рис. 2, b). соответствует условие hk0m: k + m = 2n, что является признаком суперструктурной $P(Pnma):(\bar{1}ss)$ группы, характерной для НСФ кристаллов *А*₂*BX*₄ семейства [20]. Примечательным является преобразование КТР вдоль оси *с* в нуль ($\alpha_{001} \approx 0$); инварный эффект наблюдается во всей области несоразмерных и соразмерных модуляций (рис. 3).

Рис. 1. Температурные зависимости межплоскостных расстояний d_{100} , d_{010} , $d_{001}(a)$ и объема (b) решетки Cs₂ZnI₄. Измерения проводились в режиме нагрева.

При 108 К происходит переход НСФ в соразмерно модулированную моноклинную фазу. На рис. 3, *b* виден небольшой скачок в параметре *c*, и этот так называемый lock—in-переход относят к первому роду, что проявляется в сосуществовании несоразмерных и соразмерных модуляций в области гистерезиса [12]. Появление брэгговских рефлексов (0, 0, 11) и (0, 1, 10), запрещенных для скользящей плоскости *n*: 0k1: k + 1 = 2n при переходе в моноклинную фазу, представлено на рис. 4. Анализ условий погасаний в области 108-96 К показал, что имеется единственное условие погасаний: 0k0: k = 2n + 1. Оно указывает на две возможные пространственные группы для моноклинной фазы $P12_1/m1$ или $P12_11$. Поскольку диэлектрическими измерениями в Cs₂ZnI₄

Рис. 2. Расположение брэгтовских и сателлитных рефлексов в области НСФ. *а* — между брэгтовскими рефлексами (060) и (260), *b* — схематически на плоскости (*a*^{*}*b*^{*}0): *I* — брэгговские рефлексы, *2* — сателлиты.

Рис. 3. Температурный ход волнового вектора модуляций (a) и инварный интервал межплоскостного расстояния $d_{001}(b)$.

не были обнаружены полярные свойства [9,10], следует принять центросимметричную пространственную группу $P12_1/m1$. Какие-либо особенности КТР в области 104 К или же 101 К, где в работах [14,15] были выявлены аномалии физических свойств, нами не зафиксированы.

Фазовый переход первого рода в триклинную фазу $P\bar{1}$ при 96 К происходит с объемным сжатием на 0.1% (рис. 1, *b*). При этом все три параметра испытывают скачки: параметры *a*, *b* сокращаются, а ось *c* удлиняется. Переход характеризуется температурным гистерезисом $\Delta T \approx 1.3$ К. Из рис. 5 видно, что отклонение $c/b - \sqrt{3}$ возрастает при фазовых переходах, т.е. структурные перестройки сопровождаются заметными нарушениями "псевдогексагонального" мотива орторомбической решетки.

2) О кристаллогеометрических особенностях модулированных фаз. Модуляция в кристаллах Cs₂ZnI₄ характеризуется следующими кристаллогеометрическими данными: направление волнового вектора $\mathbf{q} \parallel [100]$, плоскость поляризации волны атомных смещений (001) [12]. Важным экспериментальным результатом представляются сведения об инварном эффекте, который наблюдается для зависимости $d_{001}(T)$. Сопоставим ориентационные характеристики модуляций и инварного эффекта в Cs₂ZnI₄ с известными данными по другим соединениям (табл. 2). Согласно табл. 2, направление волнового вектора \mathbf{q} в реальном пространстве для каждого кристалла определяет ось зоны \mathbf{J}_{mnp} , к которой принадлежит плоскость атомных

Рис. 4. Анализ условий погасаний сканирования по плоскости $(0 b^* c^*)$ при температурах несоразмерной и соразмерной моноклинной фаз.

Вещество,	Пространстренная	Направление волнового вектора		Плоскость	Плоскость
температурный интервал НСФ	группа, решетка	в обратной решетке	в кристаллической решетке	атомных смещений	нулевого КТР
Cs ₂ ZnI ₄ [12], 120–108 K	Pnma,a = 10.84 Å,b = 8.31 Å,c = 14.47 Å	$(1-\delta)a^*/2$	[100]	(001)	(001)
CS(NH ₂) ₂ [4], 202–169 K	Pnma,a = 7.655 Å,b = 8.537 Å,c = 5.520 Å	δb^*	[010]	(001)	(001)
Sn ₂ P ₂ Se ₆ [2], 220–193 K	$P2_1/c,a = 6.83 \text{ Å},b = 7.70 \text{ Å},c = 11.72 \text{ Å},\beta = 124.5^{\circ}$	$-\delta_1 a^* + \delta_2 c^*$	[100]	(001)	(001)
Cs ₃ Sb ₂ I ₉ [21], 78-72 K	P - 3m1, a = 8.435 Å, b = 10.390 Å	$(1/2-\delta)a^*+c^*/2$	[100]	Нет данных	(001)
As ₃ AsS ₃ [1], 60–48 K	R - 3m1, a = 10.82 Å, b = 8.69 Å	$(1-\delta)a^*/3 + (1-\delta)c^*/3$	[001] (главная компонента)	Нет данных	(100)

Таблица 2. Ориентационные характеристики модуляций и инварного направления

смещений (поляризации). Нормаль к этой плоскости соответствует межплоскостному расстоянию, которое остается постоянным при изменении температуры, т.е. в упрощенной формулировке "инварное направление" перпендикулярно и плоскости волны атомных смещений и волновому вектору. Модель наблюдаемых решеточных аномалий может, на наш взгляд, основываться на конкуренции между статическими смещениями атомов при модуляциях и их термическими колебаниями. Мы исходим из того, что термическое расширение межатомных связей в кристалле в модулированном состоянии, как и в нормальном, определяется ангармонической частью потенциала взаимодействия между атомами. При нагреве с увеличением амплитуды термических колебаний составляющая вдоль связи между атомами увеличивает длину связи, а составляющие колебаний в поперечных направлениях вызывают наклоны этих связей. При этом кристаллогеометрия атомных смещений в модулированной волне может вносить дополнительные анизотропные вклады в КТР.

Согласно схеме на рис. 6, проекция межатомной связи на нормаль к плоскости волны смещений (т.е. межплоскостное расстояние) может оставаться неизменной при нагреве за счет компенсации удлинения межатомных связей увеличением их наклонов. Это представляется возможным в НСФ, поскольку в модулированном состоянии статические смещения химически различных атомов, имея одинаковую длину волны, отличаются по амплитуде. В результате наклоны межатомных связей в перпендикулярном плоскости поляризации направлении увеличиваются. Например, в родственном для Cs₂ZnI₄ соединении Rb₂ZnCl₄ амплитуда смещений катионов Rb⁺ почти в 3 раза меньше амплитуды смещений анионов Cl⁻ [22]. В кристаллах типа β -K₂SO₄ оценочные увеличения наклонов межатомных связей, компенсирующих удлинения связей, составляют ~ 3°. В таком описании инварные свойства кажется естественным ожидать в направлении, перпендикулярном плоскости поляризации, что и наблюдается в случаях, представленных в табл. 2. Для проверки модели планируются детальные струк-

Рис. 5. Температурная зависимость отношения d_{001}/d_{010} .

Рис. 6. Схематическое объяснение инварного эффекта в модулированной фазе. *а* — компенсация удлинения связи увеличением ее наклона, *b* — увеличения наклона межатомных связей в результате статических модулированных смещений атомов с разной амплитудой.

турные исследования атомных смещений в нескольких температурных точках НСФ.

Итак, в настоящей работе определен температурный ход межплоскостных расстояний для плоскостей (100), (010) и (001) вдоль осей а, b, с исходной нормальной фазы, уточнены последовательность фазовых переходов и пространственная группа $P2_1/m$ для моноклинной фазы кристаллов, а также обсуждена возможная кристаллографическая модель инварного эффекта в несоразмерных фазах. Результаты работы показывают, что стандартные измерения d(T) на брэгговских рефлексах оказываются существенными для определения плоскости атомных смещений в модуляционной волне. Обсуждаемая закономерность пока подтверждается на ограниченном числе кристаллов, представленных в табл. 2. По-видимому, целесообразно развитие дальнейших экспериментов по измерению КТР для зональных плоскостей, объединяемых направлением волнового вектора.

Авторы выражают благодарность И.П. Александровой за кристаллы и И.М. Шмытько за предоставление гелиевого криостата для исследований.

Список литературы

- S.S. Khasanov, V.Sh. Shekhtman. Ferroelectrics 67, 1, 371 (1986).
- [2] Т.К. Парсамян, В.Ш. Шехтман. ФТТ 31, 5, 69 (1989).
- [3] H. Futama. J. Phys. Soc. Jap. 17, 3, 436 (1962).
- [4] И.М. Шмытько, Б.Ш. Багаутдинов, В.К. Магатаев. ФТТ 38, 7, 2223 (1996).
- [5] В.Л. Покровский, Л.П. Прядко. ФТТ 29, 5, 1492 (1987).
- [6] Z.H. Cummins. Phys. Rep. 185, 5&6, 211 (1990).
- [7] D.E. Scaife. Austral. J. Chem. 24, 1315 (1971).
- [8] К.С. Александров. Кристаллография **38**, *1*, 128 (1993).
- [9] K. Gesi. J. Phys. Soc. Jap. 50, 11, 3535 (1981).
- [10] F. Shimizu, T. Anzai, S. Savada, M. Takashige. Ferroelectics 185, 3, 301 (1996).
- [11] И.П. Александрова, С.В. Примак, Е.В. Шеметов, А.И. Круглик. ФТТ **33**, *5*, 1344 (1991).
- [12] B.Sh. Bagautdinov, I.P. Aleksandrova. Solid State Commun. 90, 12, 817 (1994).
- [13] S.V. Melnikova, S.V. Primak. Phase Trans. 36, 191 (1991).
- [14] D.P. Billesbach, F.G. Ullman. Phys. Rev. B46, 9, 5073 (1992).
- [15] J. Diaz-Hernandez, M.J. Tello, I. IgartuaRuiz-Larrea, T. Breczewski, A. Lorez-Echarri. J. Phys.: Condens. Matter. 7, 7481 (1995).
- [16] J.J. Melero, J. Bertolome, R. Burriel, I.P. Aleksandrova, S. Primak. Solid State Commun. 95, 4, 201 (1995).
- [17] A.E. Jacobs. J. Phys.: Condens. Matter. 8, 517 (1996).
- [18] В.В. Боровиков, Л.С. Круц, Г.С. Медько, А.А. Новомлинский, Г.А. Рязанкин, И.М. Шмытько. Приборный комплекс для низкотемпературных исследований при внешних воздействиях. Препринт ИФТТ АН СССР. Черноголовка (1984).
- [19] O.P. Lamba, M.B. Patel. S. Ram. P. Chand, H.D. Bist. Solid State Commun. 50, 321 (1984).
- [20] P.M. de Wolff, T. Janssen, A. Janner. Acta Cryst. A37, 625 (1981).
- [21] M.S. Novikova, B.Sh. Bagautdinov, I.P. Aleksandrova, M. Blomberg. Solid State Commun, in press.
- [22] A. Hedoux, D. Grebille, J.Jaud, G. Godefroy. Acta Cryst. B45, 370 (1989).