Состояние спинового стекла и возвратное к состоянию спинового стекла поведение в сульфошпинелях железа с разбавленными *A*- и *B*-подрешетками

© А.И. Абрамович, Л.И. Королева, Л.Н. Лукина

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия E-mail: koroleva@ofef43.phys.msu.su

(Поступила в Редакцию 18 мая 1998 г.)

Изучены магнитные и электрические свойства новых составов со структурой шпинели $Fe_{1-x}Cr_{2(1-x)}Sn_{2x}S_4$ $(0.1 \le x \le 0.33)$ (1), Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S₄ и Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S₄. Эти составы являются полупроводниками р-типа и имеют магнитные свойства, характерные для следующих типов магнитного порядка: ферримагнитного (состав с x = 0.1 системы 1), спин-стеклообразного (состав с x = 0.33 системы 1 и состав $Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4)$ и возвратного к состоянию спинового стекла поведения (состав с x = 0.2 системы Iи состав Fe_{0.67} [Fe_{0.33}Cr_{0.67}Sn]S₄). Для составов — спиновых стекол зависимость температуры замораживания $T_{\rm f}$, определенной как температура максимума начальной магнитной восприимчивости, от температуры и магнитного поля подчиняется соотношению Алмейды–Таулесса, а зависимость T_f от частоты магнитного поля — степенному закону. Для составов — спиновых стекол и составов с возвратным поведением в районе T_f обнаружен большой максимум модуля отрицательного изотропного магнитосопротивления, достигающий 15% для спиновых стекол и 30% — для составов с возвратным поведением. Для составов с возвратным поведением обнаружено изменение энергии активации проводимости в районе T_f примерно на 2 порядка. Эти опытные факты указывают на то, что переходы спиновое стекло-парамагнетик в составах — спиновых стеклах и спиновое стекло — дальный магнитный порядок являются фазовыми переходами, а в спинстеклообразной области имеются ферромагнитные кластеры типа ферронов. Это первые спиновые стекла среди халькошпинелей с магнитоактивными ионами в тетраэдрической и октаэдрической подрешетках.

В настоящей работе обнаружены и подробно исследованы состояние спинового стекла (СС) и возвратное к состоянию СС поведение в хромных сульфошпинелях железа с разбавленными тетраэдрическими (А) и октаэдрическими (В) подрешетками. До настоящего времени состояние СС наблюдалось в халькошпинелях с магнитоактивными ионами в одной из подрешеток. Так, например, описано состояние СС в Ga_{2/3}Cr₂S₄ [1], Cu_{0.5}Me_{0.5}Cr₂Se₄ (Me = In, Ga) [2], $Cu_{2/3}Ge_{1/3}Cr_2S_4$ [3], $CdCr_{2x}In_{2-2x}S_4$ [4], $ZnCr_{2x}Al_{2-2x}S_4$ [5] и $Zn_{1-x}Mn_xIn_2S_4$ [6]. Представляло интерес выяснить, возможно ли существование состояния СС в халькошпинелях, когда магнитоактивные ионы находятся одновременно в А- и В-подрешетках. Так как в шпинелях межподрешеточный косвенный антиферромагнитный (АФМ) обмен значительно сильнее обмена внутри подрешеток, возможность существования состояния СС в таких халькошпинелях далеко не очевидна. Так, в соединении FeCr₂S₄ со структурой нормальной шпинели, разбавленные составы которой рассмотрены в данной работе, величины обменных интегралов следующие: $J_{\text{Cr-Cr}} = \pm 1 \text{ K}$ и $J_{\text{Cr-Fe}} = -10 \text{ K}$ [7].

Изучению СС посвящено большое количество работ, описанных, например, в обзорах [8–12] и монографиях [13,14]. Однако некоторые основные вопросы остались неразрешенными. Не ясна природа СС и есть ли это новая фаза, а также существует ли термодинамический фазовый переход СС-парамагнетик (ПМ) или СС-дальний магнитный порядок (ДМП). В настоящее время к СС относят те вещества, у которых наблюдается максимум начальной магнитной восприимчивости при некоторой температуре $T = T_f$, которую обычно называют температурой замораживания, зависимость магнитных свойств при $T < T_f$ от термомагнитной истории образца и от времени и отсутствие дальнего магнитного порядка из данных нейтронной дифракции. Однако такими же свойствами обладают, кроме истинных СС, и суперпарамагнетики. В отличие от истинных СС у суперпарамагнетиков отсутствует фазовый переход, а в T_f происходит лишь термическое блокирование моментов кластеров, и их "замораживание" является динамическим неравновесным явлением. В суперпарамагнетиках T_f , температура максимума начальной восприимчивости, измеренной в переменном магнитном поле частоты ω , зависит от ω по закону Аррениуса

$$1/\omega = 1/\omega_0 \exp[E/(kT_f)], \qquad (1)$$

где $\omega_0 \approx 10^9 \, {\rm s}^{-1}$ — частотный фактор, равный обратному минимальному времени релаксации, E — величина энергии, необходимой для того, чтобы перебросить магнитный момент кластера в противоположное направление (например, под действием термического возбуждения). Оказалось, что практически во всех известных в настоящее время CC, за исключением разбавленного сплава AgMn [15], наблюдается частотная зависимость T_f , правда, в большинстве случаев несколько отличающаяся от закона Аррениуса. Вопрос о существовании фазового перехода в реальных материалах, отнесенных к CC, широко обсуждается в литературе. Однако до сих пор не получено однозначного ответа на этот вопрос.

Состав	Θ, Κ	$M_{ m 4.2K},\ \mu_{ m B}$	$M_{sp},\ \mu_{ m B}$	$M_{ng},\ \mu_{ m B}$	T_C, \mathbf{K}	T_f, \mathbf{K}	$ ho,~\Omega\cdot { m cm}$		
							80 K	293 K	
Fe _{0.9} Cr _{1.8} Sn _{0.2} S ₄	-60	0.91	1.8	1.44	120		1100	31.9	
$Fe_{0.8}Cr_{1.6}Sn_{0.4}S_4$	-76	0.52	1.6	1.28	87	65	4500	25.6	
$Fe_{0.67}Cr_{1.33}Sn_{0.67}S_4$	-200	0.18	1.31	1.04		36	$25 \cdot 10^4$	1082	
$Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S_4$	35	0.22	0.65	0.52	110	60	2185	7.8	
$Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4$	158	0.35	0.98	0.78		29	67.5	1.3	

Таблица 1. Основные магнитные и электрические характеристики исследованных составов

В данной работе приводятся следующие экспериментальные свидетельства существования фазовых переходов СС–ПМ и СС–ДМП в указанных выше материалах: выполнение соотношений динамического скейлинга и некоторых соотношений теории среднего поля, а также особенности электросопротивления и магнитосопротивления (МС) в районе указанных переходов. Кроме того, большое отрицательное МС в районе T_f , обнаруженное в рассмотренных материалах, свидетельствует о том, что в фазу СС входят ферромагнитные (ФМ) кластеры типа ферронов [16].

1. Образцы и техника эксперимента

Поликристаллические образцы системы твердых растворов $Fe_{1-x}Cr_{2(1-x)}Sn_{2x}S_4$ (0.1 $\leq x \leq 0.33$) и составы $Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4$, $Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S_4$ были получены методом твердофазного синтеза из высокочистых элементов сотрудниками химического факультета МГУ Кеслером и Филимоновым [17]. Соответствующая смесь исходных элементов подвергалась серии отжигов при температурах 800–1100 К (перед каждым отжигом она измельчалась, гомогенизировалась и прессовалась в таблетки) в откачанных до 10 bar и затем запаянных кварцевых ампулах.

Для анализа полученных образцов использовались рентгенофазовый анализ (РФА) [фильтрованное Со K_{α} -излучение], а также эффект Мессбауэра (ЯГР) на изотопах ⁵⁷Fe при 90 и 300 К. Образцы по данным РФА представляют собой однофазную шпинель (пространственная группа Fd3m). С помощью метода характеристических расстояний, хорошо зарекомендовавшего себя для соединений с плотнейшей упаковкой по аниону [18], в работе [17] было установлено, что ионы Sn⁴⁺ занимают только октаэдрические позиции. С помощью этого метода и ЯГР было выяснено, что тетраэдрические позиции в той или иной степени заселены ионами Fe²⁺.

Спектры ЯГР состава $Fe_{0.8}Cr_{0.6}Sn_{0.4}S_4$ на изотопе ⁵⁷ Fe были сняты при T = 90 и 300 K (рис. 2 работы [17]). Оказалось, что при T = 300 K они содержат ярко выраженный асимметричный дублет с квадрупольным расщеплением 1.0 mm/s, причем изомерный сдвиг соответствует тетраэдрическому иону Fe²⁺ (0.54 mm/s относительно металлического Fe), что можно связать с искажением тетраэдрического окружения ионов железа и появлением осевой симметрии. Это указывает на частичное упорядочение ионов железа и вакансий в тетраэдрической подрешетке, которое приводит к понижению истинной симметрии, не детектируемое РФА. Эти соединения синтезированы впервые.

Измерения намагниченности проводились либо баллистическим методом с использованием многослойного сверхпроводящего соленоида, либо с помощью вибрационного магнетометра в электромагните. Для измерения начальной восприимчивости в постоянном магнитном поле использовался однослойный сверхпроводящий соленоид, при этом кривые намагниченности, полученные с помощью баллистического метода, дифференцировались по полю. Для измерения магнитной восприимчивости в слабых переменных магнитных полях был применен цифровой феррометр Ф5063. Для измерения парамагнитной восприимчивости был использован весовой метод Фарадея с электромагнитной компенсацией. Электросопротивление было измерено четырехзондовым методом.

2. Результаты эксперимента и их обсуждение

1) Переход от ферромагнетизма к состоянию спинового стекла в системе твердых растворов $Fe_{1-x} Cr_{2(1-x)} Sn_{2x}S_4$ (0.1 $\leq x \leq 0.33$). Состояние спинового стекла в составе Fe_{0.67} [Fe_{0.165} CrSn_{0.835}]S₄ и возвратное к состоянию спинового стекла поведение в составе Fe_{0.67} [Fe_{0.33} Cr_{0.67} Sn]S₄. В табл. 1 представлены основные магнитные и электрические характеристики составов, указанных в заглавии данного пункта. Здесь Θ — парамагнитная точка Кюри, *T_C* — температура Кюри, *M*_{4.2 K} — магнитный момент на химическую формулу, определенный из намагниченности при 4.2 К, *M_{sp}* и *M_{ng}* — теоретические магнитные моменты на химическую формулу, полученные из чисто спиновых и нейтронографических значений моментов ионов Fe²⁺ и Cr³⁺ соответственно при антиферромагнитном (АФМ) упорядочении моментов, входящих в А- и В-подрешетки (мы полагали нейтронографические значения моментов ионов Fe²⁺ и Cr³⁺ равными 4.2 и 2.9 $\mu_{\rm B}$ соответственно).

Оказалось, что все образцы являются полупроводниками с *p*-типом проводимости. Как видно из химической

Puc. 1. Температурная зависимость обратной парамагнитной восприимчивости $1/\chi$ составов системы $Fe_{1-x}Cr_{2(1-x)}Sn_{2x}S_4$ с *x*, равным 0.1 (1), 0.2 (2), 0.33 (3), и составов $Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4$ (4) и $Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S_4$ (5). Масштабы по осям *a*, *b* и *c* разные.

формулы системы твердых растворов Fe_{1-x}Cr_{2(1-x})Sn_{2x}S₄ (1), с ростом x возрастает дефицит ионов Fe²⁺ в тетраэдрической подрешетке и одновременно увеличивается разбавление октаэдрической подрешетки диамагнитными ионами Sn⁴⁺. Состав с x = 0.1 системы (1) имеет магнитные свойства, типичные для ферромагнетика: парамагнитная восприимчивость \varkappa подчиняется закону Нееля (рис. 1) и изотермы намагниченности насыщаются в поле 6 kOe как при T = 4.2 K (рис. 2), так и при $77 \leq T \leq 110$ K. Однако величина магнитного момента $M_{4.2$ K почти в 2 раза ниже величины M_{sp} и M_{ng} (табл. 1). Температура Кюри этого состава, определенная с помощью метода Белова–Аррота, равна 120 К. Занижение величины $M_{4.2$ K, по-видимому, связано с наличием ми-

Puc. 2. Зависимость магнитного момента на химическую формулу $M_{4.2 \text{ K}}$ от магнитного поля H при температуре 4.2 K составов системы $\text{Fe}_{1-x}\text{Cr}_{2(1-x)}\text{Sn}_{2x}\text{S}_4$ с x, равным 0.1 (1), 0.2 (2), 0.33 (3), и составов $\text{Fe}_{0.67}[\text{Fe}_{0.165}\text{CrSn}_{0.835}]\text{S}_4$ (4) и $\text{Fe}_{0.67}[\text{Fe}_{0.33}\text{Cr}_{0.67}\text{Sn}]\text{S}_4$ (5).

крообластей с разрушенным магнитным порядком. Это разрушение может быть вызвано фрустрацией связей из-за разбавления *В*-подрешетки диамагнитными ионами Sn⁴⁺ и наличием вакансий в *А*-подрешетке.

Для составов с x = 0.2 и 0.33 системы *I* изотермы намагниченности не насыщаются вплоть до 35 kOe при 4.2 K (рис. 2) и до 10 kOe при $T \ge 77$ K (здесь указаны максимальные поля, в которых производились измерения). Парамагнитная восприимчивость этих составов подчиняется закону Кюри–Вейсса (рис. 1).

Температурная зависимость начальной магнитной восприимчивости \varkappa в постоянном и переменном магнитных полях состава с x = 0.2 показана на рис. 3. Как видно из этого рисунка, \varkappa резко уменьшается с падением

Рис. 3. Температурная зависимость начальной магнитной восприимчивости χ , нормализованной к ее максимальному значению χ_{max} , в постоянном магнитном поле H = 30 Oe (1) и в переменном поле H = 0.3 Oe с частотой $\omega = 200 \text{ Hz} (2)$ образца Fe_{0.8}Cr_{1.6}Sn_{0.4}S₄.

температуры от $T_f = 65$ К, что типично для возвратного к состоянию СС поведения. Температура Кюри $T_C = 87$ К была определена по максимуму на кривой 2 (рис. 3). Были получены доказательства существования состояния СС ниже T_f , а именно наблюдалась зависимость магнитных свойств ниже T_f от условий охлаждения. Так, на рис. 4 приводятся температурные зависимости термоостаточной намагниченности образца, охлажденного в поле H = 57.5 Ое от $T > T_f$ до T = 4.2 К, и изотермической остаточной намагниченности, полученной для образца, охлажденного до 4.2 К в отсутствии поля. Видна существенная разница между этими кривыми ниже

Рис. 4. Температурная зависимость остаточной намагниченности образца, состава $Fe_{0.8}Cr_{1.6}Sn_{0.4}S_4$, охлажденного в поле 57.5 Ос от T = 90 до 4.2 К (TRM) и охлажденного без поля (IRM).

Рис. 5. Температурная зависимость начальной магнитной восприимчивости χ в переменном магнитном поле с частотой 500 Hz (H = 0.3 Oe) и воздействие на эту зависимость постоянного магнитного поля H, равного 0 (1), 10 (2), 20 (3), 35 (4), 50 (5) и 70 Oe (6), для состава Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄. Постоянное магнитное поле приложено параллельно переменному.

 $T_f = 65$ К. Наблюдалось и смещение петли гистерезиса по оси *H* образца, охлажденного в указанном выше поле до 4.2 К, тогда как для охлажденного без поля образца петля была симметричной.

Состав с x = 0.33 системы I обладает магнитными свойствами, характерными для СС. Так, на температурной зависимости начальной восприимчивости, измеренной в переменном магнитном поле (интервал частот измерения $0.3 \le \omega \le 2 \text{ kHz}$), наблюдается максимум при T_f , который довольно быстро подавляется небольшим постоянным магнитным полем, приложенным параллельно переменному (рис. 5). Намагниченность σ в постоянном поле H = 46 Oe при $T \le T_f$ зависит от условий охлаждения: так, кривая $\sigma(T)$ образца, полученная при охлаждении образца в указанном поле от $T > T_f$ до T = 4.2 K, расположена значительно выше, чем кривая $\sigma(T)$ образца, охлажденного до 4.2 K в отсутствие поля (последняя кривая получена при нагревании образца, при этом поле включалось только на время измерения).

Состав Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S₄ обладает магнитными свойствами, сходными с описанными выше для состава с x = 0.33 системы *I*, характерными для состояния СС. Магнитные свойства состава Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S₄ похожи на свойства состава с x = 0.2, присущие возвратному к состоянию СС поведению. Парамагнитная восприимчивость указанных составов подчиняется закону Кюри–Вейсса (рис. 1). Изотермы намагниченности этих составов при 4.2 К представлены на рис. 2. Видно, что эти кривые не испытывают насыщения, а величина $M_{4.2 \text{ K}}$ при H = 30 kOe много ниже величин M_{sp} и M_{ng} , представленных в табл. 1.

2) Динамика спин-стеклообразного замораживания. В исследованных нами составах-СС обнаружена зависимость температуры замораживания, определенной по максимуму начальной восприимчивости в переменном магнитном поле, от частоты ω этого поля. Как отмечалось выше, почти во всех реальных материалах, отнесенных к СС, наблюдается частотная зависимость T_f . Однако оказалось, что в этих материалах время релаксации τ в районе температуры замораживания, характерному для суперпарамагнетиков, и в ряде случаев подчиняется эмпирическому закону Вогеля–Фульчера [8]

$$\tau = 1/\omega = \tau_0 \exp\{E/k(T - T_0)\},$$
 (2)

где $\tau_0 \approx 10^{-12}$ s — минимальное время релаксации, E — величина с размерностью энергии. Поскольку время релаксации τ расходится при $T = T_0$, в ряде работ на основании этого полагалось, что T_0 — точка фазового перехода СС–ПМ. В то же время известно, что если при некоторой температуре T^* имеет место фазовый переход, то время релаксации флуктуаций намагниченности испытывает в T^* критическое замедление, и τ подчиняется степенному закону [19]

$$\tau = \tau_0 [T/(T - T^*)]^{z\nu}.$$
 (3)

Здесь *z* — динамический индекс, а *ν* — критический индекс корреляционной длины Эдвардса–Андерсона.

Состав	T_f, K	Закон Аррениуса (1)		Обобщенный закон Аррениуса (4)		Степенной закон (3)			Закон Вогеля-Фульчера (2)		
		$ au_0, { m s}$	E, meV	$ au_0, { m s}$	zν	$ au_0, { m s}$	zν	T^*, K	$ au_0, { m s}$	E, meV	T_0, K
Fe _{0.67} Cr _{1.33} Sn _{0.67} S ₄	35	$5.3\cdot10^{-27}$	170.4	10^{-12}	2.5	$1.9\cdot10^{-10}$	7.6	32	$3.0\cdot10^{-12}$	23.3	23
				10^{-9}	3.8	$2.0\cdot10^{-11}$	9.6	31	$1.5 \cdot 10^{-11}$	20	24
						$2.7 \cdot 10^{-12}$	11.7	30			
						$7.2 \cdot 10^{-12}$	10.7	30.5			
$Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4$	31.2	$2.4 \cdot 10^{-27}$	182.5	10^{-12}	2.9	$6.7 \cdot 10^{-11}$	7.4	30	10^{-12}	21	22
				10^{-11}	3.6	$2.0 \cdot 10^{-11}$	8.5	29.5	$5 \cdot 10^{-12}$	17.6	23
				10^{-10}	3.9	$4.0 \cdot 10^{-12}$	9.7	29	$2.5 \cdot 10^{-11}$	14.4	24
						$3.0 \cdot 10^{-13}$	12.2	28	$2.5 \cdot 10^{-11}$		

Таблица 2. Подгонка зависимости $T_f(\omega)$ под законы (1)–(4)

Предпринятое Огиельским [20] численное моделирование по методу Монте-Карло изинговского СС с $T^* \neq 0 ~(\pm J$ -модель, трехмерный случай) дало значение $z\nu = 7.2 \pm 1$.

Биндер и Янг предложили альтернативную гипотезу, в которой температура фазового перехода СС–ПМ полагалась равной нулю [21]. Для τ они получили следующее соотношение, получившее название обобщенного закона Аррениуса:

$$\ln(\tau/\tau_0) = T^{-z\nu}.$$
 (4)

Предпринятое Биндером и Янгом численное моделирование по методу Монте-Карло изинговской системы $(\pm J$ -модель) дало значение $z\nu = 2$ для двухмерного случая и $z\nu = 4$ для трехмерного.

Для ряда реальных CC зависимость $T(\omega)$ сравнивалась с тремя перечисленными выше законами, и в зависимости от того, какому закону подчинялась эта зависимость, делался вывод о наличии или отсутствии фазового перехода при температуре, отличной от нуля, для данного СС. В настоящей работе произведена подгонка зависимости $T(\omega)$ под законы (1)–(4) для описанных выше новых соединений, в которых нами обнаружено состояние СС, а именно для Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄ и Fe_{0.67}[Fe_{0.165}CrSn_{0.67}]S₄. Для этого в двойном логарифмическом масштабе строились экспериментальные зависимости (1)-(4), при этом в качестве au подставлялись значения $1/\omega$ и в качестве Т в законах Вогеля-Фульчера и степенном — T_f. Подгоночными параметрами являлись T₀ в (2), T* в (3) и τ_0 в (4). Для степенного закона и закона Вогеля-Фульчера в качестве То и Т* подставлялись температуры замораживания, определенные по максимуму начальной восприимчивости, измеренной в постоянном магнитном поле, а также нескольких близких к ним температур. Из построенных зависимостей отбирались те, где точки удовлетворительно ложатся на прямые линии, с помощью которых определялись величины au_0 в законе Аррениуса, τ_0 и Е в законе Вогеля-Фульчера, τ_0 и $z\nu$ в степенном законе, а также $z\nu$ в обобщенном законе Аррениуса. В табл. 2 представлены значения τ_0 , $z\nu$ и E, определенные из наиболее удачных подгоночных параметров для каждого закона. Как видно из этой таблицы, зависимости $T(\omega)$ для обоих составов лучше всего соответствует степенной закон (3). Закон Вогеля– Фульчера (3) дает нереально малую величину T_0 , а закон Аррениуса (1) — сильно заниженные значения τ_0 . Обобщенный закон Аррениуса (4) для трехмерного случая дает завышенное τ_0 для лучшей подгонки у Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄ и заниженное значение $z\nu$ для лучшей подгонки у Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S₄. Выполнение степенного закона для зависимости $T(\omega)$ свидетельствует в пользу того, что в рассматриваемых СС имеет место фазовый переход СС–ПМ.

3) Выполнение соотношения Алмейды– Таулесса для составов-спиновых стекол. В теории среднего поля СС было показано, что на плоскости (*H*, *T*) существует линия, ниже которой параметр порядка Эдвардса–Андерсона нестабилен [11]. Это так называемая линия Алмейды–Таулесса в модели Изинга

$$1 - [T_f(H)/T_f(0)] \sim H^{2/3}.$$
 (5)

Здесь $T_f(H)$ — температура замораживания, измеренная в магнитном поле H, а $T_f(0)$ — температура замораживания, измеренная в нулевом магнитном поле. Оказалось, что в реальных СС зависимость $T_f(H)$ подчиняется соотношению (5). Эти эксперименты рассматривались как доказательства справедливости теории среднего поля для этих СС и существования соответствующего ей фазового перехода [8-14]. В данной работе для СС-составов Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄ и Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S₄ исследовано влияние постоянного магнитного поля на температуру замораживания, определенную по максимуму начальной восприимчивости χ , измеренной в переменном магнитном поле. На рис. 5 в качестве примера представлена зависимость $\chi(T)$ и воздействие на нее постоянного магнитного поля Н, приложенного параллельно переменному, для состава Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄. Из рис. 5 видно, что при возрастании величины постоянного поля $\chi_{\rm max}$ уменьшается, а сам максимум смещается в сторону более низких температур. На рис. 6 в двойном логарифмическом масштабе представлена зависимость $\{1 - [T_f(H)/T_f(0)]\}$ от *H* для состава Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄. Видно, что точки удовлетворительно ложатся на прямую линию, при этом тангенс угла наклона равен 0.61,

Рис. 6. Зависимость $\{1 - [T_f(H)/T_f(0)]\}$ от H в двойном логарифмическом масштабе для состава Fe_{0.67}Cr_{1.33}Sn_{0.67}S₄.

что очень близко к показателю степени 2/3 в соотношении Алмейды–Таулесса (5). Этот факт свидетельствует в пользу существования фазовых переходов СС–ПМ в указанных выше материалах.

4) Особенности магнитосопротивления в районе температуры замораживания. Как показало изучение температурной зависимости удельного электросопротивления ρ , все изученные в данной работе составы являются полупроводниками. Величины ρ указанных составов приводятся в табл. 1. Измерение коэффициента термоэдс при T = 77 и 293 К показало, что все составы имеют *р*-тип проводимости.

На температурной зависимости магнитосопротивления составов-СС и составов с возвратным поведением обнаружены особенности в районе температуры замораживания. В качестве примера на рис. 7 и 8 показана зависимость МС от температуры в разных магнитных полях для состава Fe_{0.67} [Fe_{0.165}CrSn_{0.835}]S₄ с состоянием СС и состава с x = 0.2 системы 1 с возвратным поведением. Из этих рисунков видно, их МС отрицательно и, как показали наши измерения, изотропно. Изотермы МС не насыщаются вплоть до максимальных полей 30 kOe, в которых производились измерения. Как видно из рис. 7, для состава СС модуль МС проходит через максимум в районе T_f и в максимуме достигает большой величины \sim 15% в поле 30 kOe. Для состава с возвратным поведением абсолютная величина MC $|\Delta \rho / \rho|$ в максимуме имеет еще бо́льшую величину ~ 30 % в поле 30 kOe (рис. 8). Из рис. 8 видно, что этот максимум округлен и более широкий, чем для спин-стекольного состава; он простирается в температурной области, захватывающей как $T_f = 65 \,\text{K}$, так и $T_C = 85 \,\text{K}$. На вставке к рис. 8 в двойном логарифмическом масштабе показана зависимость $\rho(T)$ состава с x = 0.2 системы 1 с возвратным поведением; видно, что в районе T_f энергия активации проводимости Еа изменяется примерно на два порядка ($E_a = 3.7 \cdot 10^{-4} \,\mathrm{eV}$ в области СС и $E_a = 4 \cdot 10^{-2} \,\mathrm{eV}$ в области с ДМП). Похожее на описанное выше поведение MC и ρ наблюдалось нами и для составов с x = 0.33 системы l (состав CC) и Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S₄ (состав с возвратным поведением).

Эти особенности МС и удельного электросопротивления указывают на существенную перестройку спиновой системы при температуре T_f . Ранее гигантский максимум $|\Delta \rho / \rho|$ в районе T_f наблюдался для Cu_{0.5}Me_{0.5}Cr₂Se₄ (Me=In, Ga) и Cu_{2/3}Ge_{1/3}Cr₂S₄ [22]. Следует заметить, что при измерении МС к образцу прикладываются большие поля, в которых, как правило, максимум или излом на кривых восприимчивости уже подавлен. Эти особенности МС и удельного электросопротивления указывают на существенную перестройку спиновой системы в T_f и являются прямым доказательством существования фазового перехода СС–ПМ и СС–ДМП.

Рис. 7. Температурная зависимость магнитосопротивления состава $Fe_{0.67}[Fe_{0.165}CrSn_{0.835}]S_4$ в магнитных полях, равных 2 (1), 16 (2) и 33 kOe (3).

Рис. 8. Температурная зависимость магнитосопротивления состава $Fe_{0.8}Cr_{1.6}Sn_{0.4}S_4$ в магнитных полях, равных 2 (1), 17 (2) и 32 kOe (3). На вставке — зависимость $\ln \rho$ от (1/T).

3. Природа спин-стеклообразного состояния

Приведенные в разделе 2 экспериментальные факты указывают на то, что в исследованных соединениях Fe0.67Cr1.33Sn0.67S4 и Fe0.67 [Fe0.165CrSn0.835]S4 наблюдается состояние СС, а в соединениях Fe_{0.8}Cr_{1.6}Sn_{0.4}S₄ и $Fe_{0.67}[Fe_{0.33}Cr_{0.67}Sn]S_4$ — возвратное к состоянию CC поведение, при этом переходы к ПМ-состоянию в первых двух составах и к состоянию с ДМП в двух последних являются фазовыми переходами. Основная причина, вызывающая в них состояние СС, — разбавление А- и В-подрешеток. Здесь в А-подрешетке имеется дефицит ионов Fe^{2+} , а в *B*-подрешетке ионы Fe^{2+} и Cr^{3+} разбавлены диамагнитными ионами Sn⁴⁺. Как известно, в шпинельной структуре порог перколяции для октаэдрической подрешетки p = 0.401 [23], а для тетраэдрической подрешетки p = 0.428 [24]. Для составов-СС отношение количества магнитоактивных ионов к полному количеству ионов в октаэдрической подрешетке *p* = 0.665 (первый состав) и *p* = 0.582 (второй состав); для тетраэдрической подрешетки обоих составов это отношение p = 0.67. Приведенные значения не существенно сильно превышают указанные пороговые концентрации для А- и В-подрешеток. При разбавлении А- и В-подрешеток ионы Fe²⁺ и Cr³⁺ располагаются в соответствующих подрешетках случайно, и хотя между ними существуют сильные АФМ-сверхобменные А-S-В-взаимодействия, эти связи не имеют периодической структуры. Вследствие этого состояние с дальним АФМ-порядком между моментами, расположенными в Аи В-подрешетках, не может осуществиться и устанавливается состояние СС. Это первые СС среди халькошпинелей с магнитоактивными ионами в А-и В-подрешетках.

Как указывалось в пункте 4 предыдущего раздела, в рассматриваемых СС наблюдался большой максимум $|\Delta \rho / \rho|$ в районе T_f . Известно, что гигантский максимум $|\Delta \rho / \rho|$ в районе температуры магнитного упорядочения характерен для примесных магнитных полупроводников [16], и его обычно связывают с наличием ферронов — ФМ-микрообластей, созданных автолокализацией носителей тока около примесей из-за выигрыша в энергии *s*-*d*-обмена. Внешнее магнитное поле разрушает ферроны, что приводит к большому отрицательному МС. Ферроны, очевидно, могут существовать и в разбавленном немагнитными ионами магнитном полупроводнике; при достаточно сильном разбавлении дальний магнитный порядок исчезает и в кристалле устанавливается состояние СС, при этом среди кластеров такого кластерного СС присутствуют кластеры ферронного типа. Вполне вероятно, что такая картина осуществляется и в рассмотренных в данной работе СС.

Авторы благодарны Я.А. Кеслеру и Д.С. Филимонову за приготовление образцов и их анализ.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты 96-02-19684а и 96-15-96429).

Список литературы

- К.П. Белов, Л.И. Королева, Н.А. Цветкова, Ю.Ф. Попов, И.В. Гордеев, Я.А. Кеслер, В.В. Титов. Письма в ЖЭТФ **31**, 9, 96 (1980).
- [2] Л.И. Королева, А.И. Кузьминых. ЖЭТФ 84, 5, 1882 (1983).
- [3] L.I. Koroleva, T.V. Virovets, A.I. Abramovich, Ya.A. Kessler. J. Magn. Magn. Mater. 115, 4, 311 (1992).
- [4] E. Vincent, J. Hammann, M. Alba. Solid State Commun. 58, 1, 57 (1986).
- [5] M. Hamedoun, A. Wiedenmann, J.L. Dormann, M. Nogues, J. Rossat-Mignod. J. Phys. C: Sol. Stat. Phys. 19, 11, 1783 (1986).
- [6] J.J. Campo, F. Palacio, V. Sagredo, G. Attolini. Proc. Abstr. Int. Conf. on Magn. Warsaw, Poland (1994). P. 869.
- [7] P. Gibart, J.L. Dormann. Pellerin Phys. Stat. Sol. 36, 1, 187 (1969).
- [8] K.H. Fischer. Phys. Stat. Sol. (b) 116, 2, 357 (1983).
- [9] D. Chowdhury, A. Mookerjee. Phys. Rep. 114, 1, 1 (1984).
- [10] C.Y. Huang, J. Magn. Magn. Mater. 51, 1, 1 (1985).
- [11] K. Binder, A. Young. Rev. Mod. Phys. 58, 4, 801 (1986).
- [12] С.Л. Гинзбург. Физика конденсированного состояния. Материалы XVI школы ЛИЯФ / Под ред. А.И. Окорокова. РТП ЛИЯФ, Л. (1982). 43 с.
- [13] D. Chowdhury. Spin glasses and other frustrated systems. World Scient. Publ. Copte Lid, Singapore (1986). 523 p.
- [14] H. Maletta, W. Zinn. In: Handbook on the Physics and Chemistry of Rare Earths / Ed. K.A. Gschneidher North Holland Amsterdam (1986). V. 12. P. 1.
- [15] E.D. Dahlberg, M. Hardiman, R. Orbach, J. Souletie. Phys. Rev. Lett. 42, 6, 401 (1979).
- [16] Э.Л. Нагаев. Физика магнитных полупроводников. М. (1979). 431 с.
- [17] Д.С. Филимонов, Я.А. Кеслер, К.В. Похолок. Неорган. материалы **32**, *8*, 930 (1996).
- [18] Я.А. Кеслер. Неорган. материалы 29, 2, 165 (1993).
- [19] P.C. Hohenberg, B.I. Halperin Rev. Mod. Phys. 49, 3, 435 (1977).
- [20] A.T. Ogielski. Phys. Rev. B32, 11, 7384 (1985).
- [21] K. Binder, A.P. Young. Phys. Rev. B25, 5, 2864 (1984).
- [22] A.I. Abramovich, T.V. Virovets, L.I. Koroleva. Phys. Lett. A153, 4/5, 248 (1991).
- [23] D. Fiorani, L. Gastaldi, A. Lapiccirella, S. Viticoli. Solid State Commun. 32, 9, 831 (1979).
- [24] M.K. Sykes, D.S. Gaunt, M. Glenn. J. Phys. A9, 10, 1705 (1976).