01;02;04

Увеличение константы скорости диссоциативного прилипания электронов к молекулам водорода за счет их колебательной накачки при течении в канале

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 15 июля 1998 г.

Исследуется электронно-колебательная кинетика в потоке колебательновозбужденного водорода, протекающего в канале. Показывается, что при соответствующей организации течения и надлежащем выборе материала стенок канала можно получить существенное увеличение константы $\langle K_{\rm DA} \rangle$ скорости диссоциативного прилипания (ДП) электронов к молекулам водорода. Эффект определяется средней колебательной энергией $\langle E_v^{(0)} \rangle$ молекул H₂, поступающих в канал.

1. В [1] показано, что может быть достигнуто существенное увеличение константы ДП $\langle K'_{DA} \rangle = \sum_{v} f'_{v} \cdot K_{v}(T'_{e})$ за счет дополнительной колебательной накачки молекул H₂ в потоке водорода в канале, стенки которого находятся при комнатной температуре *T* и выполнены из материала с большим значением потенциального барьера для адсорбции H₂. Здесь f'_{v} — нормированная на единицу колебательная функция распределения (КФР) молекул H₂ на выходе из канала; $K_{v}(T'_{e})$ — константа ДП электрона к молекуле, возбужденной на уровень v [2,3]; T'_{e} — температура электронов в камере, куда истекает из канала колебательное возбуждение H₂ осуществляется, что первоначальное колебательное возбуждение H₂ осуществляется в низковольтном Cs–H₂ разряде. Параметры плазмы такого разряда достаточно точно определяются теоретически [4]. В качестве материала стенок канала рассматривается грань монокристалла Cu (111), для которой хорошо изучены вероятности адсорбции [5] и десорбции [6–8] молекул H₂ с

69

поверхности. В отличие от [1] расчеты выполнены с учетом конечной степени покрытия Θ стенок канала адсорбированными атомами Н.

2. Распределение концентраций $N_{\rm H_2}$ и $N_{\rm H}$ молекулярного и атомарного водорода по длине канала и КФР f_{ν} молекул H₂ в канале определяются из уравнений (2)–(4) и (6) в [1], в которых потери на стенках колебательно возбужденного и атомарного водорода выражаются как N_{ν}/τ_{ν} и $N_{\rm H}/\tau_{\rm H}$, где N_{ν} — концентрации колебательно-возбужденных молекул в канале;

$$\tau_{\nu} = \frac{L^2}{\pi^2 D_{sd}} + \frac{L}{\nu_{\rm H_2}} \frac{2 - \gamma_{\nu}}{\gamma_{\nu}}, \quad \tau_{\rm H} = \frac{L^2}{\pi^2 D_{12}} + \frac{L}{\nu_{\rm H}} \frac{2 - \gamma_{\rm H}}{\gamma_{\rm H}}$$
(1), (2)

— эффективные времена жизни частиц [1,9]; D_{sd} и D_{12} — соответственно коэффициент самодиффузии молекул H₂ и атомов H в молекулах H₂;

$$\gamma_{\nu}(\Theta) = w_{\nu}(T)(1-\Theta)^2, \ \gamma_{\rm H}(\Theta) = w_{\rm H}(T) \cdot (1-\Theta) + \sigma_{\rm ER}^{(eff)} \cdot \sigma_{\rm H}\Theta \ (3), (4)$$

— соответственно доли возбужденных на уровень *v* молекул и атомов, исчезающих на поверхности стенок канала, от общего числа частиц, падающих на поверхность [6–7,10–11]; $w_v(T)$ и $w_H(T)$ — вероятности прилипания возбужденной на уровень *v* молекулы H₂ [5] и атома H к поверхности Cu(111) при температуре *T* газа в канале; $\sigma_H \cong 1.5 \cdot 10^5$ cm⁻² — плотность сорбционных центров на поверхности Cu(111) [12]; $\sigma_{ER}^{(eff)} \cong 5\dot{A}^2$ — эффективное сечение поверхностий рекомбинации по механизму Илей-Райдила (И–Р) [6,7]. Считалось, что при $T \cong 300$ K $w_H \cong 1$ (ср. с [13]). Используемое значение $\sigma_{ER}^{(eff)}$ результат обработки экспериментальных данных [12], выполненной в [7]. При указанных значениях w_H и $\sigma_{ER}^{(eff)}$, $\gamma_H(\Theta) \sim 1$ и $\tau_H \cong L^2/\pi^2 D_{12}$, т. е. τ_H практически не зависит от $\gamma_H(\Theta)$ и w_H .

Согласно [5], w_v и $1/\tau_v$ отличны от нуля лишь для $v \ge 5$. В противоположность этому десорбция со стенок колебательно возбужденных молекул H₂ как по механизму И–Р [6], так и по механизму Ленгмюра– Хиншельвуда (Л–Х) [8] происходит в диапазоне колебательных чисел $1 \le v \le 4$ (при десорбции по Л–Х КФР определяется из принципа детального равновесия). Вследствие сравнительно больших заселенностей N_v и частых переходов на нижних уровнях $v \le 4$ десорбция колебательно-возбужденных молекул со стенок мало влияет на КФР в канале. Это влияние учитывалось приближенно в предположении, что

десорбирующиеся молекулы равномерно распределяются по ширине L канала. Степень покрытия Θ определялась из уравнения

$$\left[2\sum_{\nu}N_{\nu}/\tau_{\nu}(\Theta) + N_{\rm H}/\tau_{\rm H}\right]L$$
$$= 2L \cdot (N_{\rm H}/\tau_{\rm H}) \cdot \sigma_{\rm ER}^{(eff)} \sigma_{\rm H}\Theta/\gamma_{\rm H}(\Theta) + 2\delta_{\rm LH}\Theta^{2}.$$
 (5)

Левая часть (5) — это количество атомов H, адсорбирующихся в единицу времени на стенках в расчете на единицу длины канала. Правая часть (5) — удвоенное количество молекул H₂, десорбирующихся с обеих стенок канала по механизмам И–Р и Л–Х. При определении константы δ_{LH} скорости десорбции по Л–Х использованы экспериментальные данные [8].

3. На рис. 1 изображены КФР $f_{\nu}^{(0)}$ молекул H₂ в разряде, т.е. на входе в канал (кривые 1-3), и соответствующие КФР f'_{ν} на выходе из канала (кривые 1'-3'). Через $N_{\rm H_2}^{(0)}$, $N_{\rm H}^{(0)}$, $N_{\rm Cs}^{(0)}$, T_0 и j_s обозначены концентрации H₂, H, полная концентрация Cs, температура газа в разряде и плотность тока эмиссии. Кривым 1-3 соответствуют разные напряжения $U = \varphi_1 - \varphi_2$ на разряде и соответственно разные величины электронной температуры T_e и средней колебательной энергии $\langle E_v^{(0)} \rangle$ молекул H₂ [1]. Длина h канала выбрана примерно оптимальной для наибольшего увеличения константы ДП $\langle K_{DA} \rangle$. Существенно, что $h \gg V \bar{ au}_{v}$, где $\bar{ au}_{v}$ — характерное время колебательного девозбуждения уровней, а V — гидродинамическая скорость в канале. Поэтому система уравнений (4) в [1], из которой находятся N_v, содержит малые параметры перед производными. Это приводит к тому, что f'_v не зависит от начальной КФР $f_v^{(0)}$, а определяется только колебательной энергией $\langle E_{v}^{(0)}
angle$ на входе в канал (см. [14]). Чтобы показать это, на рис. 1 приведен результат расчета, в котором начальная КФР $f_v^{(0)}$ заменена на обрезанное распределение Больцмана для $0 \le v \le 4$ (прямая *1 B*) с той же колебательной энергией $\langle E_v^{(0)} \rangle$, что и $f_v^{(0)}$ (кривая 1). Получающееся при этом на выходе канала колебательное распределение (кривая l'B) практически совпадает с точной расчетной кривой 1'.

На рис. 2 приведены константы ДП $\langle K_{\rm DA}^{(0)} \rangle = \sum_{\nu} f_{\nu}^{(0)} K_{\nu}(T'_e)$ (кривые *1–3*), соответствующие исходной КФР $f_{\nu}^{(0)}$, и константы $\langle K'_{\rm DA} \rangle$

Puc. 1. Колебательные функции распределения молекул H₂ на входе в канал $f_v^{(0)}$ (1-3) и на выходе из канала $f_v'(1'-3')$. *IB* и *I'B* — распределение Больцмана на входе в канала L = 0.3 cm, h = 3 cm, T = 0.03 eV. Параметры разряда: $N_{\text{H}_2}^{(0)} = 10^{16} \text{ cm}^{-3}$, $N_{\text{Cs}}^{(0)} = 10^{14} \text{ cm}^{-3}$, $T_0 = 0.06 \text{ eV}$, $f_s = 10 \text{ A/cm}^2$. $I - T_e = 0.53 \text{ eV}$, $\langle E_v^{(0)} \rangle = 0.303 \text{ eV}$, $n_e = 5.8 \cdot 10^{13} \text{ cm}^{-3}$, $\varphi_1 = 3.01 \text{ V}$, $\varphi_2 = 1.09 \text{ V}$. $N_{\text{H}}^{(0)} = 4.0 \cdot 10^{13} \text{ cm}^{-3}$. $2 - T_e = 0.75 \text{ eV}$, $\langle E_v^{(0)} \rangle = 0.411 \text{ eV}$, $n_e = 7.25 \cdot 10^{13} \text{ cm}^{-3}$, $\varphi_1 = 6.13 \text{ V}$, $\varphi_2 = 2.04 \text{ V}$. $N_{\text{H}}^{(0)} = 1.85 \cdot 10^{14} \text{ cm}^{-3}$. $3 - T_e = 1.0 \text{ eV}$, $\langle E_v^{(0)} \rangle = 0.496 \text{ eV}$, $n_e = 8.8 \cdot 10^{13} \text{ cm}^{-3}$, $\varphi_1 = 8.96 \text{ V}$, $\varphi_2 = 2.91 \text{ V}$. $N_{\text{H}}^{(0)} = 3.43 \cdot 10^{14} \text{ cm}^{-3}$.

Рис. 2. Зависимость констант скорости диссоциативного прилипания от температуры T'_e электронов в камере: $I-3 - \langle K_{DA}^{(0)} \rangle$; $I'-3' - \langle K'_{DA} \rangle$; I'B — значение $\langle K'_{DA} \rangle$ на выходе из канала, соответствующее начальному распределению Больцмана *I B* на рис. 1. Параметры разряда те же, что на рис. 1.

на выходе из канала (кривые l'-3'). Видно, что $\langle K'_{DA} \rangle$ существенно превышает $\langle K'_{DA} \rangle$. Учет конечной величины Θ приводит к тому, что отношение $\langle K'_{DA} \rangle / \langle K^{(0)}_{DA} \rangle$ заметно превышает соответствующую величину,

найденную в [1]. Согласно сказанному выше, f'_{ν} и $\langle K'_{\text{DA}} \rangle$ зависят только от $\langle E_{\nu}^{(0)} \rangle$. Это существенно, так как ввиду отсутствия надежных данных о константах переходов между уровнями для больших ν , заселенности $N_{\nu}^{(0)}$ верхних уровней H₂ в разряде могут определяться со значительной погрешностью. В то же время колебательная энергия $\langle E_{\nu}^{(0)} \rangle$, сосредоточенная на нижних уровнях, определяется достаточно надежно. Чтобы оценить зависимость результатов от расчетных констант, нами были использованы константы $\nu - t$ обмена с атомами H из [15] (в отличие от предыдущих расчетов, где использовались данные [16]). Это привело к существенному увеличению $N_{\nu}^{(0)}$ для больших ν , но почти не отразилось не только на $\langle E_{\nu}^{(0)} \rangle$ и $\langle K'_{\text{DA}} \rangle$, но и на $\langle K_{\text{DA}}^{(0)} \rangle$ (при вычислении $\langle K_{\text{DA}}^{(0)} \rangle$ существенны лишь значения $f_{\nu}^{(0)}$ при $\nu \leqslant 7-8$).

Таким образом, показана возможность существенного увеличения константы ДП $\langle K_{\text{DA}} \rangle$ при соответствующей организации течения колебательно возбужденного водорода в канале.

Авторы благодарят С.М. Школьника за полезное обсуждение.

Работа выполнена при подержке гранта INTAS № 94-316.

Список литературы

- [1] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1998. Т. 68. В. 10. С. 10–19.
- [2] Wadehra J.M. // Phys. Rev. A. 1984. V. 29. N 1. P. 106-110.
- [3] Skinner D.A., Brunetau A.M., Berlemont P., Courteille C., Leroy R., Bacal M. // Phys. Rev. E. 1993. V. 48. N 3. P. 2122–2132.
- [4] Baksht F.G., Djuzhev G.A., Elizarov L.I., Ivanov V.G., Kostin A.A., Shkolnik S.M. // Plasma Sources. Sci. Technol. 1994. V. 3. N 2. P. 88–98.
- [5] Cacciatore M., Billing G.D. // Surf. Sci. 1990. V. 232. N 1/2. P. 35-50.
- [6] Persson M., Jackson B. // J. Chem. Phys. 1995. V. 102. N 2. P. 1078–1093.
- [7] Jackson B., Persson M. // J. Chem. Phys. 1995. V. 103. N 14. P. 6257–6269.
- [8] Anger G., Winkler A., Rendulic K.D. // Surf. Sci. 1989. V. 220. N 1. P. 1-17.
- [9] Ионих Ю.З. // О и С. 1981. Т. 51. В. 1. С. 76-83.
- [10] Pick M.A., Sonnenberg K. // J. Nuclear Materials. 1985. V. 131. P. 208-220.
- [11] Andrew P.L., Haasz A.A. // J. Appl. Phys. 1992. V. 72. N 7. P. 2749–2757.
- [12] Rettner C.T. // Phys. Rev. Lett. 1992. V. 69. N 2. P. 383-386.
- [13] Bischler U., Sandl P., Bertel E. // Phys. Rev. Lett. 1993. V. 70. N 23. P. 3603– 3606.

- [14] Бакшт Ф.Г., Дюжев Г.А., Елизаров Л.И., Иванов В.Г., Никитин А.Г., Школьник С.М. // Письма в ЖТФ. 1993. Т. 19. В. 22. С. 39–43.
- [15] Garcia E., Lagana A. // Chem. Phys. Lett. 1986. V. 123. N 5. P. 365–370;
 J. Phys. Chem. 1986. V. 90. N 6. P. 987–989.
- [16] Schatz G.C. // Chem. Phys. Lett. 1983. V. 94. N 2. P. 183-187.