## 07 Оптимизация выходных характеристик голограмм в кристалле Bi<sub>12</sub>SiO<sub>20</sub> выбором ориентации кристалла и поляризации считывающего света

## © В.В. Шепелевич, П.П. Хомутовский

Мозырский государственный педагогический институт

## Поступило в Редакцию 4 февраля 1998 г.

Исследуется зависимость ориентационного угла  $\theta^m$ , при котором достигается максимальная дифракционная эффективность голограммы, записанной в кристалле Bi<sub>12</sub>SiO<sub>20</sub>, от толщины кристалла *d*. Показано, что оптическая активность и пьезоэлектрический эффект качественно изменяют форму зависимостей  $\theta^m(d)$ .

Вопросы, связанные с оптимизацией выходных характеристик голограмм, записанных в кубических фоторефрактивных кристаллах, рассматривались в ряде работ (например, [1-8]). В [1] было установлено значение азимута поляризации линейно поляризованного считывающего света, при котором достигалась наибольшая дифракционная эффективность голограммы в кристалле  $Bi_{12}SiO_{20}$  (BSO) толщиной  $d \approx 2 \, \text{mm}$  для двух ориентаций вектора голографической решетки  $\mathbf{K} \parallel [001]$  и  $\mathbf{K} \perp [001]$ . Аналитические выражения для значений азимута считывающего света, при которых коэффициент усиления голографической решетки, были найдены в [2,3]. В работе [4] аналитически исследованы возможности оптимизации дифракционной эффективности голограммы за счет правильного выбора ориентационного угла.

Первое экспериментальное и теоретическое изучение фотоупругого вклада в фоторефрактивный эффект в кубических кристаллах было проведено в [5]. Экспериментальное исследование зависимости коэффициента усиления при двухволновом взаимодействии от ориентации вектора голографической решетки в кубическом кристалле GdTe: Ge с целью оптимизации энергообмена световых волн было выполнено в [6].

55



**Рис. 1.** Зависимость ориентационного угла  $\theta^m$  от толщины кристалла d: I — без учета пьезоэлектрического эффекта и оптической активности, 2 — с учетом пьезоэлектрического эффекта, 3 — с учетом оптической активности, 4 — с учетом пьезоэлектрического эффекта и оптической активности.

Изучение возможностей оптимизации дифракционной эффективности голограмм, записанных в кубических оптически активных пьезокристаллах, было проведено в [7,8]. Здесь получены экспериментальные и теоретические зависимости максимальной дифракционной эффективности от ориентационного угла.

Целью настоящей работы является исследование зависимости максимальной дифракционной эффективности  $\eta^m$  голограммы от толщины кристалла BSO, определение влияния на форму этой зависимости оптической активности и пьезоэлектрических свойств кристаллического образца, а также нахождение ориентаций кристалла, соответствующих максимальной дифракционной эффективности.

Пусть ненаклонная пропускающая голографическая решетка записана в кристалле среза ( $\bar{1}\bar{1}0$ ) по стандартной схеме двухволнового взаимодействия (например, [9]) и считывается опорной волной *R*. В этом случае на основании подхода [7,8] можно определить ориентационный угол  $\theta = \theta^m$ , образованный вектором голографической решетки **K** с кри-



**Рис. 2.** Зависимость  $\eta^m$  от ориентационного угла  $\theta$  и толщины кристалла d: a — без учета пьезоэлектрического эффекта и оптической активности, b с учетом пьезоэлектрического эффекта, c — с учетом оптической активности, d — с учетом пьезоэлектрического эффекта и оптической активности.

сталлографическим направлением [001], при котором для определенного фиксированного азимута  $\psi_0 = \psi_0^m$  линейно поляризованной опорной волны достигается максимальная дифракционная эффективность  $\eta = \eta^m$ .

На рис. 1 представлены графики зависимостей  $\theta^m(d)$  для четырех случаев. Прямая линия 1 ( $\theta \approx 53^\circ$ ) получена для фоторефрактивного кристалла, не проявляющего пьезоэлектрический эффект и оптическую активность. Прямая 2 ( $\theta \approx 54^\circ$ ) соответствует учету пьезоэлектричекого эффекта (совместно с фотоупругостью), но оптическая активность



**Рис. 3.** Зависимость ориентационного угла  $\theta^m$  от толщины кристалла d: 1 — без учета пьезоэлектрического эффекта и оптической активности, 2 — с учетом пьезоэлектрического эффекта, 3 — с учетом оптической активности, 4 — с учетом пьезоэлектрического эффекта и оптической активности.

при ее построении не принималась во внимание. Кривая 3 построена с учетом оптической активности кристалла, однако без учета пьезоэлектрического эффекта. Случай реального кристалла BSO, в котором все перечисленные выше эффекты проявляются одновременно, описывается кривой 4.

Все расчеты проводились при следующих значениях параметров кристалла BSO [9]: фотоупругие постоянные  $p_1 = -0.16$ ,  $p_2 = -0.13$ ,  $p_3 = -0.12$ ,  $p_4 = -0.015$ , электрооптический коэффициент  $r_{41} = -5.0 \cdot 10^{-12}$  mV, коэффициенты упругости  $c_1 = 12.96 \cdot 10^{-10}$  H/m<sup>2</sup>,  $c_2 = 2.99 \cdot 10^{-10}$  N/m<sup>2</sup>,  $c_3 = 2.45 \cdot 10^{-10}$  N/m<sup>2</sup>, показатель преломления

кристалла n = 2.54, пьезоэлектрический коэффициент  $e_{14} = 1.12 \text{ C/m}^2$ , удельное вращение  $\alpha = 0.372 \text{ rad/mm}$ . Предполагается также, что длина световой волны  $\lambda = 0.6328 \,\mu\text{m}$ , угол Брэгта внутри кристалла  $\varphi = 11^\circ$ , амплитуда электрического поля решетки  $E = 0.5 \,\text{kV/cm}$ .

Мы видим, что учет пьезоэлектрического эффекта "сдвигает" значение величины  $\theta^m$  в сторону больших углов. Учет оптической активности приводит к резкому уменьшению угла  $\theta^m$  при увеличении толщины кристалла, а при некотором критическом значении толщины ( $d \approx 5.7 \text{ mm}$ )  $\theta^m$  становится равным нулю (точка A) и это значение не изменяется при дальнейшем увеличении d. Одновременный учет оптической активности и пьезоэлектрического эффекта приводит к уменьшению  $\theta^m$  при увеличении толщины d, однако при достижении точки B ( $d \approx 8 \text{ mm}$ ), соответствующей повороту плоскости поляризации на  $180^\circ$ ,  $\theta^m$  снова начинает возрастать, затем убывает до точки C ( $d \approx 16 \text{ mm}$ ), которая соответствует повороту плоскости поляризации на  $360^\circ$ , и т.д.

Поскольку трехмерные графики зависимости максимальной дифракционной эффективности от угла  $\theta$  и толщины кристалла d содержат 4 "горба" одинаковой высоты, два из которых при  $d \approx 5.7$  mm сливаются в один (рис. 2), представляет интерес привести графики зависимости  $\theta^m(d)$  (рис. 3) для всех четырех "горбов".

Отметим, что аналогичные зависимости можно построить для значений  $\theta^m$ , которые соответствуют максимальным значениям относительно интенсивности одной из волн при двухволновом взаимодействии. В этом случае будут наблюдаться нижняя и верхняя серии кривых, изображенных на рис. 3. Две внутренние серии кривых, расположенные вблизи угла  $\theta = 180^\circ$ , будут соответствовать минимальному энергообмену из *R* в *S* волну.

Нетрудно показать, что при малых углах Брэгга без учета пьезоэлектрического эффекта полученные результаты переходят в результаты работы [10], причем прямая *I* соответствует направлению [111] ( $\theta \approx 55^{\circ}$ ).

Таким образом, установлено существенное качественное изменение формы зависимости  $\theta^m(d)$  под влиянием пьезоэлектрического эффекта и оптической активности.

Авторы признательны Н.Н. Егорову за полезное обсуждение полученных результатов.

Благодарим Министерство образования Республики Беларусь за поддержку этой работы.

## Список литературы

- Petrov M.P., Pencheva T.G., Stepanov S.I. // J. Optics (Paris). 1981. V. 12. N 5. P. 287–292.
- [2] Mallick S., Rouede D. // Appl. Phys. 1987. B 43. P. 239-245.
- [3] Mallick S., Rouede D., Apostolidis A.G. // J. Opt. Soc. Am. 1987. B4. P. 1247– 1259.
- [4] Шепелевич В.В., Храмович Е.М. // Опт. и спектр. 1988. Т. 65. № 2. С. 403– 408.
- [5] Степанов С.И., Шандаров С.М., Хатьков Н.Д. // ФТТ. 1987. Т. 29. № 10. С. 3054–3058.
- [6] Odoulov S.G., Slusarenko S.S., Scherbin K.V. // Pis'ma Zh. Teckh. Fiz. 1991.
  V. 15. P. 81–84.
- [7] Мандель А.Е., Шандаров С.М., Шепелевич В.В. // Письма в ЖТФ. 1988. Т. 14. № 23. С. 2147–2151.
- [8] Shepelevich V.V., Shandarov S.M., Mandel A.E. // Ferroelectrics. 1990. V. 110. P. 235–249.
- [9] Shepelevich V.V., Egorov N.N., Shepelevich Victor // J. Opt. Soc. Am. 1994.
  V. 11. N 8. P. 1394–1402.
- [10] *Храмович Е.М.* Дифракция света на фотоиндуцированных решетках в кубических гиротропных фоторефрактивных кристаллах. Дис. канд. физ.мат. наук. Минск, 1990. 170 с.