Влияние внешнего магнитного поля и захваченного магнитного потока на вольт-амперные характеристики гранулярного высокотемпературного сверхпроводника YBa₂Cu₃O_{7-δ}

© В.В. Деревянко, Т.В. Сухарева, В.А. Финкель

Национальный научный центр "Харьковский физико-технический институт" Национальной академии наук Украины, 61108 Харьков, Украина

E-mail: finkel@kipt.kharkov.ua

(Поступила в Редакцию 5 сентября 2005 г.

В окончательной редакции 20 октября 2005 г.)

Проведено сравнительное изучение вольт-амперных характеристик керамического образца высокотемпературного сверхпроводника YBa₂Cu₃O_{~6.95} при T = 77.3 К в широком диапазоне значений напряженности внешних магнитных полей **H**_{ext} и "полей обработки" **H**_{treat}. Обнаружено, что полевые зависимости параметров a и j_c степенного уравнения $E = a(j - j_c)^{\nu}$, описывающего вольт-амперные характеристики, существенно зависят от способа приложения магнитного поля, в то время как величина показателя степени $\nu \sim 2$ не зависит ни от способа приложения, ни от напряженности магнитного поля. Установлена полевая зависимость захваченного магнитного поля H_{trap} .

PACS: 74.72.Bk, 74.25.Fy, 74.25.Ha

1. Введение

Вольт-амперные характеристики (ВАХ или IVC (в англоязычной литературе)) различных образцов керамического (гранулярного) высокотемпературного сверхпроводника (ВТСП) $YBa_2Cu_3O_{7-\delta}$ в зависимости от температуры, величины и ориентации внешнего магнитного поля Н, магнитной предыстории, электрического поля и т.п. интенсивно изучают уже на протяжении около двух десятилетий (см., например, [1–12]). Изучение ВАХ ВТСП позволило решить ряд важнейших задач фундаментальной и прикладной сверхпроводимости. Имеется в виду определение магнитополевых и температурных зависимостей межгранульных (*j*_{cJ}) и внутригранульных (*j*_{cg}) критических токов керамик ВТСП, измерение нижних и верхних критических полей сверхпроводящих гранул (H_{c1g} , H_{c2g}) и джозефсоновских слабых связей — weak links (H_{c1J}, H_{c2J}) , изучение динамики процессов проникновения и захвата магнитного потока, исследование фазовых переходов вихревой материи и т.п.

Преобладающее большинство экспериментов по исследованию ВАХ керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ проводилось по следующему алгоритму: образец охлаждают в отсутствие магнитного поля до $T < T_c$ (так называемый режим zero field cooling, ZFC), затем прикладывают внешнее магнитное поле \mathbf{H}_{ext} и, пропуская через образец электрический ток *I*, регистрируют ВАХ характеристику V(I) (или, что предпочтительнее, зависимость напряженности электрического поля *E* от плотности тока j - E(j)). Существует, однако, и альтернативный алгоритм регистрации ВАХ гранулярных ВТСП — исследуемый образец при $T < T_c$ в отсутствие электрического тока помещают во внешнее магнитное поле (поле намагничивания или "поле

обработки") **Н**_{treat}, затем поле выключают (реализуется режим, близкий к режиму field cooling, FC) и регистрируют ВАХ характеристику при H = 0. Применяется этот алгоритм сравнительно редко — для изучении релаксационных и гистерезисных эффектов (см., например, [13–15]), для определения нижних критических полей джозефсоновских слабых связей H_{c1J} и сверхпроводящих гранул H_{c1g} (см., например, [16–20]) и т.п.

Надо полагать, что в слабых магнитных полях $H \sim H_{c1g}$ даже при одинаковом взаимном расположении векторов I и H и практически совпадающих величинах критических токов I_c образцов, ВАХ характеристики которых получены в ZFC-режиме в магнитных полях H_{ext} или FC-режиме (измерения в нулевом поле после обработки полем H_{treat}), их "магнитная микроструктура", т. е. распределение магнитного поля в сверхпроводящих гранулах и в слабых связях ВТСП, может быть существенно различна. Действительно, согласно существующим представлениям (см., например, [21]), динамика проникновения магнитного поля в ВТСП в ZFC-режиме и в FC-режиме отлична: в ZFC-режиме на динамику проникновения поля оказывают влияние как эффекты экранирования поля Hext сверхпроводящими токами, индуцируемыми в образце, так и наличие центров пиннинга; в FC-режиме основную роль играет наличие центров пиннинга.

Вопрос относительно существования отличий в ВАХ гранулярных ВТСП, полученных в ZFC- и в FC-режимах при выполнении условия $I_c(H_{ext}) = I_c(H_{treat})$, насколько нам известно, систематически не изучался. Между тем, на основании изучения эволюции полевых зависимостей ВАХ характеристик ВТСП в ZFC- и FC-режимах в принципе возможно, и решение обратной задачи — восстановление "магнитной микроструктуры" образцов гранулярных ВТСП.

Целью настоящей работы и является сравнительное изучение эволюции полевых зависимостей ВАХ характеристик образца ВТСП состава $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 К в широком диапазоне значений напряженности как внешних магнитных полей H_{ext} , так и полей намагничивания H_{treat} .

2. Методика эксперимента, обработка результатов

Во избежание влияния отличий в макро- и микроструктуре исследуемых образцов и каких-либо внешних факторов на результаты исследований все измерения ВАХ характеристик в настоящей работе проведены на серии образцов ВТСП состава YBa₂Cu₃O_{~6.95}, синтезированных по "стандартной" керамической технологии [22] в строго идентичных условиях.¹ Для аттестации исследуемых образцов использовались методы рентгеноструктурного анализа, резистивных и магнитных измерений критической температуры перехода в сверхпроводящее состояние Тс. Образцы были практически однофазными. Температура середины сверхпроводящего перехода $T_c^{\frac{1}{2}}$ составляла 92.6 К, ширина перехода $\Delta T_c = 0.4$ К. Размер образца УВа₂Си₃О_{~6.95} составлял $\sim 2 \times 3 \times 20$ mm. Низкоомные токовые и потенциальные Ад-контакты наносились при помощи проводящего клея.

Наполненный жидким азотом сосуд Дьюара с держателем образца помещался в соленоид из медной проволоки. ВАХ характеристики образцов ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 К получали: в перпендикулярном ($I \perp H_{ext}$) внешнем магнитном поле ($0 \leq H_{ext} \leq 500$ Oe); в нулевом внешнем магнитном поле в зависимости от величины предварительно приложенного перпендикулярного ($I \perp H_{treat}$) поля намагничивания ($0 \leq H_{treat} \leq 500$ Oe), т.е. по сути от величины захваченного магнитного потока.

Для снятия ВАХ при измерениях по обоим алгоритмам применяли специальную установку [20,23], созданную на базе ЭВМ типа IBM PC/AT 386, состоящую из блока управления током источника магнитного поля (соленоида) I_{sol} и блока управления измерительным током I_{meas} , протекающим через образец. Все измерения производились в автоматическом режиме.

При измерениях во внешнем магнитном поле \mathbf{H}_{ext} при заданном значении тока через соленоид I_{sol} (соответствующем заданному значению напряженности магнитного поля H_{ext}) измерительный ток I_{meas} (направления токов I_{sol} и I_{meas} , естественно, совпадали) плавно увеличивался до появления на образце напряжения $U = 5 \, \mu \text{V}$, затем массив данных E(j) при $I_{\text{sol}} = \text{const}$ записывался в память ЭВМ, ток I_{meas} сбрасывался и задавалось следующее значение тока I_{sol} (большее по сравнению с предыдущим во избежание гистерезисных эффектов).

Рис. 1. ВАХ для образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 K, полученные во внешнем магнитном поле $H_{\text{ext}} = 13.6$ Ое (светлые символы) и при H = 0 после обработки в магнитном поле $H_{\text{treat}} = 258.2$ Ое (темные символы).

При измерениях в нулевом магнитном поле предварительно прикладывалось поле $\mathbf{H}_{\text{treat}}$, после выдержки в течение нескольких минут² ток I_{sol} сбрасывался и измерения проводились по описанной выше процедуре; затем измерительный ток сбрасывался, образец отогревался до $T > T_c$ и вновь охлаждался до 77.3 K, задавалось следующее значение H_{treat} и вся процедура измерений повторялась.

На рис. 1 представлены типичные ВАХ E(j) для образца ВТСП YBa₂Cu₃O_{~6.95} при T = 77.3 K, измеренные во внешнем магнитном поле $H_{\text{ext}} = 13.6$ Oe и при H = 0 после намагничивания в магнитном поле $H_{\text{treat}} = 258.2$ Oe. В обоих случаях критические плотности тока j_c , определенные по критерию E = 0, практически совпадали, однако ход ВАХ заметно отличался.

ВАХ характеристики обрабатывали по следующей методике. Прежде всего находили приближенное значение плотности критического тока j_c (по достаточно жесткому критерию E = 0, см. выше) при заданных значениях H_{ext} или H_{treat} . Далее производили обработку ВАХ при $j \geq j_c$.

Как известно (см., например, [4,25,26]), в относительно слабых магнитных полях ВАХ характеристика E(j) керамических (гранулярных) ВТСП со случайным распределением межзеренных критических токов в первом приближении может быть описана степенной функцией вида

$$E = a(j - j_c)^{\nu}.$$
 (1)

Параметры уравнения (1) — *a*, *j*_c и *v* — определялись по методу наименьших квадратов.

 $^{^1}$ Ввиду высокой воспроизводимости результатов измерений ВАХ приводятся данные, полученные на одном и том же образце ВТСП $\rm YBa_2Cu_3O_{\sim6.95}.$

² Установлено [5,24], что при таких временах выдержки величина захваченного магнитного потока во времени существенно не изменяется.

Условия получения ВАХ	<i>a</i> ,arb. units	j_c , A/cm ²	ν	Коэффициент корреляции, <i>R</i> ²
$H_{\rm ext} = 13.6 {\rm Oe}$	0.80 ± 0.18	3.33 ± 0.15	1.72 ± 0.14	0.998

 3.32 ± 0.20

Параметры зависимостей $E = a(j - j_c)^{\nu}$ для ВАХ характеристик образца ВТСП YBa₂Cu₃O_{\sim 6.95} при T = 77.3 К

Для примера в таблице приведены результаты обработки ВАХ, показанных на рис. 1. Высокие значения коэффициентов корреляции ($R^2 \rightarrow 1$) свидетельствуют о том, что ВАХ характеристики исследуемого образца ВТСП YBa₂Cu₃O_{~6.95} адекватно описываются степенной функцией (1).

 0.19 ± 0.07

Всего по обоим описанным выше алгоритмам было получено и обработано несколько сотен ВАХ.

3. Результаты исследования

 $H_{\text{treat}} = 258.2 \,\text{Oe}$

На рис. 2 и 3 некоторые из ВАХ керамического образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 К, полученных по обоим алгоритмам, представлены в координатах $H_{\text{ext}}-j-E$ и $H_{\text{treat}}-j-E$ соответственно.

В первую очередь обращает на себя внимание существенное отличие в характере эволюции ВАХ под действием внешнего магнитного поля \mathbf{H}_{ext} и поля намагничивания \mathbf{H}_{treat} : отличное от нуля сопротивление образца (E > 0) при $j \rightarrow 0$ появляется уже во внешнем поле $H_{ext} \sim 50 \text{ Oe}$,³ в то время как после "обработки" полем $H_{treat} \geq 500 \text{ Oe}$ участок с нулевым электросопротивлением на ВАХ (E = 0) сохраняется. Это различие в ходе ВАХ достаточно наглядно проявляется в полевых зависимостях критического тока j_c (см., проекции ВАХ на плоскости $H_{ext}-j$ и $H_{treat}-j$ при E = 0 на рис. 2 и 3).

Хотя в настоящей работе все измерения проводились при нормальной ориентации магнитного поля ($I \perp H_{ext}$ или $I \perp H_{treat}$, см. выше), это обстоятельство не должно влиять на общность полученных результатов, согласно современным представлениям об электродинамике джозефсоновской среды (см., например, [11,27]), в умеренно сильных магнитных полях ВАХ гранулярных ВТСП практически не чувствительны к взаимной ориентации векторов I и H. Очевидно, что напряженность "эффективного магнитного поля" (H^{eff}), действующего на образец в виде прямоугольного параллелепипеда размером $x \times y \times z$, в силу наличия размагничивающего фактора D должна существенно отличаться от напряженности приложенного поля H_0 ($H_0 = H_{ext}$ или H_{treat}). Как известно [15], для сверхпроводника в мейсснеровском состоянии, т. е. в магнитных полях $H < H_{c1g}$

 2.46 ± 0.19

$$H^{\text{eff}} = \frac{H_0}{1 - D_i},\tag{2}$$

0.997

где D_i — компоненты тензора размагничивающих коэффициентов образца.

Рис. 2. ВАХ E(j) для образца ВТСП УВа₂Cu₃O_{~6.95} при T = 77.3 К, полученные во внешних магнитных полях H_{ext} . Кривая на плоскости (j, H_{ext}) — полевая зависимость критического тока $j_c(H_{\text{ext}})$.

Рис. 3. ВАХ E(j) для образца ВТСП УВа₂Cu₃O_{~6.95} при T = 77.3 К, полученные при H = 0 после обработки в магнитных полях H_{treat} . Кривая на плоскости (j, H_{treat}) — полевая зависимость критического тока $j_c(H_{\text{treat}})$.

³ В дальнейшем будут в основном рассматриваться ВАХ, на которых присутствуют области с нулевым сопротивлением (E = 0).

Рис. 4. Зависимости параметров уравнения $E = a(j - j_c)^{\nu}$ от эффективного внешнего магнитного поля $H_{\text{ext}}^{\text{eff}}$ (светлые символы) и эффективного поля намагничивания $H_{\text{treat}}^{\text{eff}}$ (темные символы) для образца ВТСП YBa₂Cu₃O_{~6.95} при T = 77.3 К. a — параметр a, b — параметр j_c, c — параметр ν .

Для трехосного эллипсоида с "длинной" осью *z*-тела, близкого по форме к исследуемому образцу, значение соответствующей геометрии эксперимента ($\mathbf{I} \perp \mathbf{H}$) *Y*-компоненты тензора D_i ($D_{\mathbf{I} \perp \mathbf{H}} = D_Y$) составляет [28]

$$D_Y = \frac{x}{x+y} - \frac{1}{2} \frac{xy}{z^2} \ln\left(\frac{4z}{x+y}\right) + \frac{xy(3y+x)}{4z^2(x+y)}.$$
 (3)

В результате обработки ВАХ построены зависимости $a(H_{\text{ext}}^{\text{eff}}), a(H_{\text{treat}}^{\text{eff}}), j_c(H_{\text{ext}}^{\text{eff}}), j_c(H_{\text{treat}}^{\text{eff}})$ и $\nu(H_{\text{ext}}^{\text{eff}}), \nu(H_{\text{treat}}^{\text{eff}})$ (рис. 4).

Видно, что несмотря на достаточно большой разброс данных зависимости величин параметров a и j_c уравнения (1) от полей $H_{\text{ext}}^{\text{eff}}$ и $H_{\text{treat}}^{\text{eff}}$ заметно отличаются. Суть этих отличий сводится к следующему: 1) наблюдается резкое уменьшение критического тока j_c от j_c^{max} практически до нуля при увеличении напряженности поля $H_{\text{ext}}^{\text{eff}}$ до ~ 80 Ое (кроме того, на кривой $j_c(H_{\text{ext}}^{\text{eff}})$ довольно явственно наблюдается изменение наклона ("излом")).

Зависимость же $j_c(H_{\text{treat}}^{\text{eff}})$ обнаруживает достаточно протяженный участок $0 < H_{\text{treat}}^{\text{eff}} < \sim 90$ Ое, на котором критический ток не зависит от $H_{\text{treat}}^{\text{eff}}$, затем j_c уменьшается в сравнительно узком диапазоне значений $H_{\text{treat}}^{\text{eff}}$ и практически выходит на насыщение при $H_{\text{treat}}^{\text{eff}} \sim 350$ Ое; 2) на кривой $a(H_{\text{ext}}^{\text{eff}})$ наблюдается сильный рост параметра a при увеличении поля $H_{\text{ext}}^{\text{eff}}$ в то время как наклон кривой $a(H_{\text{treat}}^{\text{eff}})$ в полях до $H_{\text{treat}}^{\text{eff}} \sim 1000$ Ое меняется весьма незначительно.

Показатель степени v в степенном уравнении (1) в пределах точности измерений не зависит ни от характера приложения магнитного поля, ни от величины полей $H_{\text{ext}}^{\text{eff}}$ и $H_{\text{treat}}^{\text{eff}}$: в измерениях во внешнем магнитном поле H_{ext} $v = 2.00 \pm 0.06$, измерения в нулевом магнитном поле после обработки в магнитном поле H_{treat} дают практически то же значение $v = 1.96 \pm 0.03$.

4. Обсуждение результатов

1) Постоянство величины критического тока j_c и практически полное совпадение ВАХ при обработке гранулярного сверхпроводника YBa₂Cu₃O_{7- δ} магнитным полем $H_{\text{treat}}^{\text{eff}} <\sim 80$ Oe (рис. 3 и 4, b), т.е. при $H_{\text{treat}}^{\text{eff}} \gg H_{c2J} > H_{c1J}$ [29,30], указывают на отсутствие эффекта захвата магнитного потока системой слабых связей. Это дает основание утверждать, что пиннинг вихрей Джозефсона в данной ситуации отсутствует, хотя подобная возможность ранее не исключалась (см., например, [31,32]).

2) Появление "излома" на кривой $j_c(H_{ext}^{eff})$ при $H_{ext}^{eff} \sim 4$ Ое и усиление зависимости критического тока от внешнего магнитного поля (рис. 4, b), по-видимому, связаны в переходом слабых связей в критическое состояние в поле H_{c2J} . Полученная в настоящей работе величина поля H_{c2J} хорошо согласуется с результатами магнитных измерений [29].

3) Результаты сравнительного изучения эволюции BAX характеристик образца ВТСП состава $YBa_2Cu_3O_{\sim 6.95}$ при $T = 77.3 \, {
m K}$ в достаточно широком диапазоне значений напряженности как внешних полей \mathbf{H}_{ext} , так и полей намагничивания \mathbf{H}_{treat} позволяют оценить величину напряженности магнитного поля H_{trap}, захваченного образцом керамического ВТСП при обработке внешним полем. Для этого, очевидно, необходимо сопоставить величины полей $H_{\text{ext}}^{\text{eff}}$ И H^{eff}_{treat}, соответствующих эквивалентным значениям критической плотности тока j_c $(j_c(H_{\text{treat}}^{\text{eff}}) = j_c(H_{\text{ext}}^{\text{eff}}),$ см., например, рис. 1). Следует полагать, что значение $H_{\text{ext}}^{\text{eff}}$, для которого $j_c(H_{\text{treat}}^{\text{eff}}) = j_c(H_{\text{ext}}^{\text{eff}})$, должно соответствовать величине захваченного магнитного поля H_{trap} в поле намагничивания $H_{\text{treat}}^{\text{eff}}$.

Зависимость поля H_{trap} от напряженности эффективного поля намагничивания $H_{\text{treat}}^{\text{eff}}$ представлена на рис. 5. Как видно, величины полей, захваченных образцом керамического (гранулярного) ВТСП YBa₂Cu₃O_{~6.95}, невелики — при максимальной величине поля $H_{\text{treat}}^{\text{eff}}$ значение $H_{\text{trap}}^{\text{max}}$ не превышает 20 Ое. Отметим, что приведенные

Рис. 5. Зависимость захваченного магнитного поля H_{trap} от поля намагничивания $H_{\text{treat}}^{\text{eff}}$ для образца ВТСП YBa₂Cu₃O_{~6.95} при T = 77.3 K.

на рисунке полевые зависимости *H*_{trap} хорошо согласуются с оценками коэффициента захвата магнитного потока [33].

4) Нелинейный характер зависимости $H_{trap}(H_{treat}^{\text{eff}})$ обусловлен, очевидно, анизотропией нижних критических полей сверхпроводящих гранул (H_{c1g}) ВТСП УВа₂Cu₃O_{7- δ}. Начало проникновения вихрей Абрикосова в гранулы сверхпроводника имеет место при минимальном значении поля $H_{treat}^{\text{eff}} \sim 90$ Oe, что соответствует величине поля H_{c1g} вдоль плоскости **ab** (H_{c1g}^{ab}) , т.е. обусловлено переходом в смешанное состояние сверхпроводящих гранул, для которых **H** || **ab**. Тенденция же к выходу зависимости $H_{trap}(H_{treat}^{\text{eff}})$ на насыщение при $H_{treat}^{\text{eff}} > 350$ Oe соответствует нижнему критическому полю H_{c1g}^c для гранул с ориентацией **H** || **c** [20,34–39].

5) Как отмечалось выше, из результатов настоящей работы однозначно следует, что степень нелинейности ВАХ, характеризуемая показателем степени ν , не зависит ни от характера приложения магнитного поля, ни от величины полей $H_{\text{ext}}^{\text{eff}}$ и $H_{\text{treat}}^{\text{eff}}$. Во всех случаях $\nu \rightarrow 2$ (рис. 4, *c*). Это означает, что как под действием внешнего магнитного поля, так и в результате наличия захваченного потока характер ВАХ характеристики ВТСП $YBa_2Cu_3O_{\sim 6.95}$ соответствует ситуации протекания электрического тока в джозефсоновской среде со случайным распределением критических токов (см., например, [40]).

6) Наиболее "сильный" эффект, обнаруженный в настоящей работе — крайне слабая зависимость параметра a в степенном уравнении для ВАХ (1) от величины захваченного магнитного потока и очень сильная зависимость a от напряженности внешнего магнитного поля (рис. 4, a). Надо полагать, что заметный рост параметра a, пропорционального в рамках перколяционной модели числу слабых связей, перешедших в резистивное состояние [12,39], при росте напряженности внешнего магнитного поля указывает на протекание достаточно интенсивного процесса подобного перехода. Очевидно, что тенденция к постоянству параметра a при обработке внешним магнитным полем согласуется с отсутствием в этих условиях пиннинга вихрей Джозефсона (см. выше). Незначительный рост a при повышении $H_{\text{treat}}^{\text{eff}} > 90$ Ое связан с воздействием на слабые связи захваченного магнитного потока, т. е. с пиннингом вихрей Абрикосова в сверхпроводящих гранулах.

Список литературы

- [1] D. Goldschmidt. Phys. Rev. B 39, 9139 (1989).
- [2] J.W. Ekin, A.I. Braginski, A.J. Panson, M.A. Janoko, D.W. Capone, N.Z. Zaluzec, B. Flandermeyer, O.F. de Lima, M. Hong, J. Kwo, S.H. Liou. J. Appl. Phys. 62, 12, 4821 (1987); J.W. Ekin, H.R. Hart, A.R. Gaddipati. J. Appl. Phys. 68, 5, 2285 (1990).
- [3] F. Stucki, J. Rhyner, G. Blatter. Physica C 181, 385 (1991).
- [4] Е.З. Мейлихов. УФН 163, 27 (1993).
- [5] L.P. Ma, H.C. Li, R.L. Wang, L. Li. Physica C 279, 79 (1997).
- [6] A. Kiliç, K. Kiliç, S. Senoussi, K. Demir. Physica C 294, 203 (1998); A. Kiliç, K. Kiliç, H. Yetiş, O. Çetin. Phys. Rev. B 68, 144 513 (2003).
- [7] Т.С. Орлова, Б.И. Смирнов, Ж.-И. Лаваль. ФТТ 40, 1195 (1998).
- [8] C.A.M. dos Santos, A.J.S. Machado. Physica C 354, 213 (2001).
- [9] W.A.C. Passon, P.N. Liboa-Filho, W.A. Ortiz. J. Magn. Magn. Mater. 226–230, 293 (2001).
- [10] М.И. Петров, Д.А. Балаев, Д.М. Гохфельд, К.А. Шайхутдинов, К.С. Александров. ФТТ 44, 1179 (2002).
- [11] D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura, A. Masoero. Phys. Rev. B 66, 184 514 (2002).
- [12] A.D. Caplin, Y. Bugoslavsky, L.F. Cohen, G.K. Perkins. Physica C 401, 1 (2004).
- [13] M. Prester, Z. Marohnic. Phys. Rev. B 47, 2801 (1993).
- [14] E. Altshuler, J.L. González. Physica C 200, 195 (1995).
- [15] M.N. Kunchur, T.R. Askew. J. Appl. Phys. 84, 12, 6763 (1998).
- [16] A.A. Zhukov, V.V. Moshchalkov, D.A. Komarkov, V.P. Shabatin, A.A. Bush, S.N. Gordeev, D.V. Shelomov. Japanese J. Appl. Phys. 29, 5, L760 (1990).
- [17] A.A. Zhukov, D.A. Komarkov, G.T. Karapetov. Physica B 169, 661 (1991).
- [18] E. Altshuler, S. Garcia, J. Barroso. Physica C 177, 61 (1991).
- [19] В.А. Финкель, В.В. Трояник. ФНТ 23, 8, 824 (1997).
- [20] В.А. Финкель, В.В. Деревянко. ФНТ 26, 2, 128 (2000).
- [21] В.Н. Губанков, Х.Р. Ростами. ФТТ 43, 7, 1168 (2001).
- [22] V.A. Finkel', V.M. Arzhavitin, A.A. Blinkin, V.V. Derevyanko, Yu.Yu. Razdovskii. Physica C 235–240, 303 (1994).
- [23] В.А. Финкель, Т.В. Сухарева, В.В. Деревянко. ФТТ 46, 10, 1740 (2004).
- [24] А.А. Суханов, В.И. Омельченко. ФНТ 27, 1, 24 (2001).
- [25] Z.X. Cai, D.O. Welch. Phys. Rev. B 45, 2385 (1992).
- [26] K.H. Lee, D. Stroud. Phys. Rev. B 45, 2417 (1992).

- [27] S.L. Ginzburg, O.V. Gerashchenko, A.I. Sibilev. Supercond. Sci. Technol. 10, 395 (1997); S.L. Ginzburg, V.P. Khavronin, I.D. Luzyanin. Supercond. Sci. Technol. 11, 255 (1998); O.V. Gerashchenko, S.L. Ginzburg. Supercond. Sci. Technol. 13, 332 (2000).
- [28] J.A. Osborn. Phys. Rev. 67, 351 (1945).
- [29] Н.Н. Ефимова, Ю.А. Попков, М.Б. Устименкова, В.А. Финкель. ФНТ 20, 4, 343 (1994).
- [30] C.A.M. dos Santos, M.S. da Luz, B. Ferreira, A.J.C. Machado. Physica C 391, 4, 345 (2003).
- [31] А.А. Козловский, В.Ф. Хирный. ФТТ 42, 10, 1780 (2000).
- [32] Н.Д. Кузмичёв. ФТТ 43, 11, 1934 (2001).
- [33] А.И. Дьяченко, В.В. Чабаненко. СФХТ 6, 2, 252 (1993).
- [34] A.F. Hebard, A.T. Fiory, D.R. Harshman. Phys. Rev. Lett, 62, 24, 2885 (1989).
- [35] S. Sridhar, Dong-Ho Wu, W. Kennedy. Phys. Rev. Lett. 63, 17, 1873 (1989).
- [36] L. Krusin-Elbaum, A.P. Malozemoff, Y. Yeshurun, D.C. Cronemeyer, F. Holtzberg. Phys. Rev. B 39, 4, 2963 (1989).
- [37] Ch. Heinzel, Ch. Neumann, P. Ziemann. Europhys. Lett. 13, 6, 531 (1990).
- [38] В.В. Мощалков, К. Маран, Ж.И. Анри, Ж. Росса-Миньо, Ж.Ф. Жако. Письма в ЖЭТФ 53, 3, 157 (1991).
- [39] Е.З. Мейлихов, В.Г. Шапиро. СФХТ 4, 1437 (1991).
- [40] C.S. Nichols, D.R. Clarke. Acta Metall. Mater. 39, 995 (1991).