04;09;12

Влияние неоднородности ионного фона на частоту колебаний виртуального катода

© В.Г. Анфиногентов, А.Е. Храмов

Государственный учебно-научный центр "Колледж", Саратов

Поступило в Редакцию 12 мая 1998 г.

Исследуется зависимость частоты колебаний виртуального катода в диодном промежутке от плотности прианодного ионного слоя. Показывается, что при больших плотностях ионного слоя в потоке формируется устойчивый сгусток электронов, что приводит к увеличению частоты генерации.

Известно, что генерация электромагнитных колебаний в приборе на виртуальном катоде (ВК) обусловлена двумя механизмами, а именно колебаниями электронов в нелинейной потенциальной яме "катод — ВК" и колебаниями ВК как единого целого [1–4]. Подавление первого из этих механизмов за счет отвода из пространства взаимодействия электронов, отразившихся от ВК обратно к плоскости инжекции [1,5], позволяет повысить как качество спектра, так и эффективность преобразования энергии потока в микроволновое излучение в виркаторе. Частота колебаний ВК определяется плазменной частотой $\omega_p = (\rho_0 e/m_e \epsilon_0)^{1/2}$ электронного потока на входе в пространство взаимодействия [2,3,4,6,7], где ρ_0 — невозмущенная плотность пространственного заряда потока; *е* и m_e — соответственно заряд и масса электрона и ϵ_0 — диэлектрическая постоянная. В работе [8] приводится следующая оценка колебаний ВК как единого целого:

$$1.93 < \omega/\omega_p < 2.31.$$

Традиционно считается, что изменение частоты генерации ВК может быть осуществлено только с помощью изменения ω_p электронного потока.

В данной работе мы рассматриваем простую модель системы с ВК — диод, пронизываемый многоэнергетическим электронным потоком со сверхкритическим током. Ограничивающие систему сетки являются эквипотенциальными. Внутри системы плотность неподвижного ионного

74

фона распределена сильно неоднородно, занимая область вблизи плоскости инжекции (анодная плазма). Управляющими параметрами системы являются параметр Пирса

$$\alpha = \omega_p \frac{L}{\nu_0}$$

который при неизменности L и v_0 пропорционален току инжектируемого пучка; отношение плотности анодной плазмы ρ_p к плотности пространственного заряда электронного потока ρ_0 : $n = \rho_p/\rho_0$ и толщина слоя прианодной плазмы x_p (в представленной работе x_p фиксировано и $x_p/L = 0.25$). Здесь L — длина пространства взаимодействия и v_0 — невозмущенная скорость потока. При $\alpha > \alpha_{cr}$ однопотоковое состояние потока становится неустойчивым к малым возмущениям плотности заряда и в системе формируется ВК [9]. Отметим, что в предельных случаях $x_p/L = 1$, n = 1 (классический диод Пирса) величина $\alpha_{cr} = \pi$ [10]; $n = 0 - \alpha_{cr} = 4/3$ [9].

Данная система представлет большой интерес в связи с возможностью описания динамики потока в таком СВЧ приборе, как виркатор с плазменным анодом [11]. Отметим, что приближение неподвижного ионного фона вполне удовлетворительно описывает протекающие в рассматриваемой системе явления, так как масса ионов $m_i \gg m_e$. Например, масса ядра водорода $\approx 1800 m_e$, поэтому время, за которое происходит заметное возмущение концентрации ионов, достаточно велико: оно составляет примерно $150 \div 200$ периодов колебаний ВК, что превышает длительность импульса тока. Аналитическое описание нестационарных процессов в рассматриваемой системе затруднено в связи с обгонами и отражениями заряженных частиц, поэтому для анализа процессов мы использовали численное моделирование методом макрочастиц [12].

На рис. 1, *а* приведены зависимости частоты генерации системы от параметра плотности плазмы *n* для различных значений тока пучка α . Видно, что при небольших плотностях анодной плазмы частота генерации меняется очень незначительно. Это изменение связано с изменением эффективного значения плазменной частоты потока ω_p с ростом плотности прианодной плазмы. С увеличением тока пучка α наблюдается рост частоты генерации, так как растет ω_p с увеличением α (v_0 и L полагаются неизменными).

Рис. 1. a — зависимость частоты генерации от плотности ионного слоя n для различных значений тока пучка α : $1 - \alpha = 0.75$; $2 - \alpha = 1.20$; $3 - \alpha = 1.75$; $4 - \alpha = 2.13$; $5 - \alpha = 2.25$. b — зависимость эффективного значения параметра Пирса α_S (•) и плотности пространственного заряда $\bar{\rho}(n)$ (•) от плотности ионного слоя n.

Рис. 2. Колебания максимальной плотности пространственного заряда в пространстве дрейфа, спектр мощности колебаний электрического поля и пространственно-временная диаграмма электронного потока для режима с малой плотностью ионного слоя n = 0.25 (*a*) и с большой плотностью ионного слоя n = 2.5 (*b*) при $\alpha = 1.375$.

При достижении определенного значения плотности ионного фона n_{cr} (α) в системе наблюдается скачок частоты генерации примерно в два раза по сравнению с частотой в диоде с таким же током и n = 0. Как видно из рис. 1, a, с ростом частоты критическая плотность n_{cr} растет с ростом α . Отметим, что при больших токах пучка система с дальнейшим ростом n переходила к стохастическим колебаниям со сплошным спектром. При небольших α наблюдался переход системы в состояние полного прохождения с сильно неоднородным распределением плотности заряда.

Рис. 2 (продолжение).

Указанный эффект увеличения частоты колебаний в потоке может быть объяснен с помощью рассмотрения физических процессов в пространстве взаимодействия. В первом режиме с низкой базовой частотой в спектре ($n < n_{cr}(\alpha)$) в потоке имеется только один электронный сгусток — ВК, и динамика системы мало отличается от случая, когда n = 0 (см. [13]). Частота колебаний ВК определяется плазменной частотой ω_p , и движения в системе близки к регулярным (рис. 2, *a*).

Ситуация сильно меняется при большой плотности прианодного ионного слоя. В этом случае за счет сильной неоднородности плазменного заполнения в области $0 < x < x_p$ наблюдается накопление числа затормозившихся в области ВК частиц. В потоке образуется устойчивый, постоянно существующий сгусток значительной плотности, который отчетливо виден на пространственно-временной диаграмме (рис. 2, *b*).

Он формируется из частиц, остающихся в пространстве взаимодействия в течение нескольких периодов колебаний ВК, а затем покидающих пространство взаимодействия. Рис. 1, *b* иллюстрирует рост усредненной во времени плотности пространственного заряда $\bar{\rho}$ в диодном промежутке в зависимости от *n*. Видно, что с ростом плотности анодного плазменного слоя накапливаемый заряд в пространстве взаимодействия при n > 2.25 примерно в два раза превышает заряд системы при n = 0. Частота колебаний в потоке с ВК определяется скоростью развития электростатической неустойчивости, которая в свою очередь зависит от эффективного параметра Пирса α_S . Рост α_S в области ВК.

Результаты расчета представлены на рис. 1, *b*. При небольших $n \alpha_S = \alpha$, однако рост *n* приводит к росту α_S . На зависимости $\alpha_S(n)$ наблюдается более резкий скачок при $n \sim 2 \div 2.5$, чем на зависимости $\bar{p}(n)$. Это связано с тем, что с увеличением плотности пространственного заряда поток более сильно тормозится в окрестности ВК, а следовательно параметр $\alpha_S \sim \sqrt{\rho} / \langle v \rangle_t$ увеличивается.

Таким образом, при сильной неоднородности ионного фона в системе с ВК наблюдается образование вторичного электронного сгустка, что ведет к росту накапливаемого пространственного заряда в области ВК. Это оказывает сильное влияние на скорость развития электростатической неустойчивости, определяющей образование ВК, что позволяет увеличить частоту генерации системы.

Работа поддержана РФФИ 98-02-16541.

Список литературы

- [1] Davis H.A., Bartch R.R., Kwan T.J.T. et al. // Phys. Rev. Lett. 1987. V. 62. P. 75.
- [2] Диденко А.Н. // ДАН СССР. 1991. Т. 321. № 4. С. 727.
- [3] Kwan T.J.T., Thode L.E. // Phys. Fluids. 1984. V. 27. P. 1570.
- [4] Burkhart S.C., Scarpetti R.D., Lundberg R.L. // J. Appl. Phys. 1985. V. 58.
 P. 28.
- [5] Davis H.A., Bartsch R.R., Kwan T.J.T. et al. // IEEE Trans. on Plasma Sci. 1988.
 V. 16. N 2. P. 192.
- [6] Диденко А.Н., Ращиков В.И. // Физика плазмы. 1992. Т. 18. № 9. С. 1182.
- [7] Lin T., Chen W., Liu W. et al. // J. Appl. Phys. 1990. V. 68. N 5. P. 2038.
- [8] Kadish A., Faehl R.J., Snell C.M. // Phys. Fluids. 1986. V. 29. N 12. P. 4192.

- [9] *High* Power Microwave Sources / Ed. by Granatstein V.L. and Alexeff I. Artech House, Boston, 1987. Ch. 13.
- [10] Pierce J. // J. Appl. Phys. 1944. V. 15. P. 721.
- [11] Селемир В.Д., Алехин Б.В., Ватрунин В.Е. и др. // Физика плазмы. 1994. Т. 20. В. 7, 8. С. 689.
- [12] Бэдсел Ч., Ленгтон А. Физика плазмы и численное моделирование. М.: Энергоатомиздат, 1989. 452 с.
- [13] Anfinogentov V.G. // Proc. of the 5th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems. NDES'97. Moscow, Russia, 28–29 June 1997. P. 284.