01;05

Нормальная зона и резистивный домен в тонкопленочных сверхпроводящих мостиках: эффекты нелинейности

© И.Л. Максимов, Д.Ю. Водолазов

Нижегородский государственный университет, Н. Новгород

Поступило в Редакцию 16 декабря 1997 г. В окончательной редакции 7 мая 1998 г.

Исследованы процессы распространения волны переключения в нормальное состояние и установления резистивного домена в тонкопленочных сверхпроводящих мостиках. Обнаружено, что нелинейность вольт-амперной характеристики (BAX) материала, параметризуемая плотностью сверхпроводящего конденсата, существенно влияет на характеристики диссипативных структур.

Состояние сверхпроводника с током, превышающим некоторое критическое значение, является метастабильным по отношению к достаточно сильным возмущениям, приводящим к зарождению и последующему распространению нормальной зоны [1]. Кроме того, в сверхпроводнике может образоваться резистивный (или нормальный) домен, представляющий собой локализованную диссипативную структуру [1].

При исследовании условий существования и характеристик диссипативных структур в тонкопленочных системах ВТСП необходимо принимать во внимание специфику низкоразмерных сверхпроводников. Последняя проявляется в существенной нелинейности вольт-амперной характеристики ВАХ в сверхпроводящих мостиках ВТСП [2], обусловленной, например, наличием фазы Березинского– Костерлиц–Таулеса (БКТ) [2,3] в системе. Показатель нелинейности

1

ВАХ в этом случае оказывается пропорциональным плотности конденсата БКТ.

В работе исследовано влияние транспортного тока на скорость распространения волны переключения в пленке высокотемпературного сверхпроводника (ВТСП) с учетом нелинейной зависимости E(j). Изучено влияние плотности конденсата на форму и размеры нормального и резистивного доменов, найдена ВАХ сверхпроводящего мостика с доменом.

Модель

Уравнение теплопроводности для сверхпроводящего мостика имеет вид

$$D_s C_s \frac{\partial T}{\partial t} = D_s \frac{\partial}{\partial x} k_s \frac{\partial T}{\partial x} + d_f Q(T) - W(T), \qquad (1)$$

где D_s — толщина подложки, C_s и k_s — теплоемкость и теплопроводность материала подложки, d_f — толщина пленки ВТСП, W(T) теплоотвод с поверхности подложки в охладитель с температурой T_0 :

$$W(T) = h(T - T_0),$$
 (2)

 $h = k_s/D_s$ — эффективный коэффициент теплоотвода.

Удельная мощность тепловыделения в пленке $Q(T) = \rho(j, T)j^2$, где $\rho(j, T) -$ эффективное сопротивление:

$$\rho(j,T) = \begin{cases}
\rho_n & T > T_c, \\
\rho_n \left(1 - \frac{j_c(T)}{j}\right)^{a(T)} & T_r < T < T_c, \\
0 & T < T_r,
\end{cases}$$
(3)

 ρ_n — удельное сопротивление сверхпроводника в нормальном состоянии, j — плотность тока, T_c — критическая температура сверхпроводника, T_r — температура перехода в резистивное состояние, определяемая из условия $j_c(T_r) = j$. Показатель нелинейности ВАХ выражается в виде $a(T) = K(T_c/T - 1)$, где K — параметр конденсата БКТ. Для простоты полагаем, что температурная зависимость критической плотности тока, обусловленной объемным пиннингом вихрей, является линейной:

$$j_c(T) = j_{c0} \left(1 - \frac{T}{T_c} \right). \tag{4}$$

Феноменологический параметр $K = \varepsilon_0 d/(k_B T_c)$ выражается через энергию вихря $\varepsilon_0 d$ в слое толщины d, где $\varepsilon_0 = \Phi_0^2/(16\pi^2\lambda(0)^2)$ есть величина, пропорциональная плотности сверхпроводящего конденсата при нулевой температуре (Φ_0 — квант магнитного потока, $\lambda(0)$ — лондоновская глубина проникновения при T = 0). Оценка величины K для типичного слоистого ВТСП материала BiSCCO ($d \approx 15$ Å, $\varepsilon_0 d \approx 3000$ K = 0.25 eV, $T_c = 80$ K) дает величину порядка 30 [4]. Оценка K для слабоанизатропных материалов типа YBaCuO затруднена ввиду того, что толщина токонесущего слоя dне известна.

Состояния равновесия системы описываются уравнением баланса для выделяемого и отводимого тепла [1,2]:

$$Q^*(T) = W(T),$$

где $Q^*(T) = d_f \cdot Q(T)$ — тепловыделение на единицу площади. Это уравнение имеет (в случае аппроксимации (3)) три корня, что соответствует трем положениям равновесия — двум устойчивым и одному неустойчивому. Устойчивыми являются состояния, для которых $\frac{\partial W}{\partial T} > \frac{\partial Q}{\partial T}$.

Ниже представлены основные результаты численного анализа уравнения (1) с условиями (2)–(4). В расчетах использованы следующие значения параметров сверхпроводника и подложки:

$$C_s = 1 \cdot 10^5 \text{ J/(m^3 \cdot K)}, \quad k_s = 340 \text{ W/(m \cdot K)}, \quad d_f = 10^{-7} \text{ m},$$

 $D_s = 5 \cdot 10^{-4} \text{ m}, \quad T_c = 92 \text{ K}, \quad T_0 = 77 \text{ K}, \quad j_{c0} = 10^{10} \text{ A/m^2}.$

Автоволны переключения

Будем искать решение (1) в виде T(x,t) = T(x - Vt) (автоволна переключения) с граничными условиями $T(x = +\infty, t = 0) = T_0$, $T(x = -\infty, t = 0) = T_1$ (здесь T_0 и T_1 — температуры первого и второго устойчивого положения равновесия соответственно) и $\frac{\partial T}{\partial x}(x = \pm\infty, t = 0) = 0$, с учетом требования непрерывности потоков тепла при температурах T_r и T_c .

На рис. 1 приведена зависимость скорости распространения автоволны от величины транспортного тока (для различных K, а также

Рис. 1. Зависимость скорости распространения волны переключения от тока при различных значениях параметра K: I - K = 5; 2 - a = 1; 3 - K = 10; 4 - K = 15; 5 - K = 30.

для случая a = 1, соответствующего линейной ВАХ жестких сверхпроводников [1] в резистивной области). Видно, что при увеличении Kзаметно расширяется диапазон токов, в котором возможно распространение волны переключения. Данный факт связан с тем, что с ростом K тепловыделение вблизи T_r становится слабо растущей функцией температуры. В результате этого исчезновение первого равновесного состояния, характеризующегося температурой $T = T^*(j, K) > T_0$, происходит при более высокой плотности тока j_{max} . Установление нормального состояния при $j > j_{max}$ не описывается автоволновым режимом.

Отметим, что в отличие от модели со ступенчатым тепловыделением V_{\max} конечна и сильно варьируется с изменением параметра *K*. Изменение V_{\max} в зависимости от *K* изображено на рис. 2.

Зависимость $V_{\max}(K)$, как видно из рис. 2, имеет минимум при $K = K^*$. Как следует из расчетов, это происходит, когда $a(T_0) \approx 1$,

Рис. 2. Зависимость максимальной скорости распространения волны переключения V_{max} от параметра K.

что дает $K^* \approx T_0/(T_c - T_0) \approx 5$ (для $T_0 = 77$ К и $T_c = 92$ К). В области значений $K < K^*$ V_{max} резко возрастает и при $K \to 0$ $V_{\text{max}} \to \infty$. Математически это объясняется тем, что при $K \to 0$ рассматриваемая нами задача эквивалентна задаче со ступенчатым тепловыделением, для которой существует точное решение, дающее $V_{\text{max}} \to \infty$ [3]. Отметим, что типичные значения V_{max} лежат в интервале 1 m/s $< V_{\text{max}} < 20$ m/s (при $1 < K < K^*$).

Численный анализ системы уравнений (1)-(3) позволяет обнаружить существование (при $K < K^*$) волны переключения нового типа: сверхпроводящее состояние — резистивное состояние (S-R-волна). При K > 50 могут также существовать волны переключения типа R-R'. Заметим, что возможность появления R-S и R-R' волн обусловлена сильной температурной нелинейностью тепловыделения, допускающей существование тройного пересечения W(T) и Q(T) даже при $T < T_c$.

ВАХ сверхпроводника со стационарным доменом

В стационарном случае, опустив член с временной производной в уравнении (1), можно представить его в виде обыкновенного дифференциального уравнения первого порядка [1]:

$$\left(k_s \frac{dT}{dx}\right)^2 = S(T),\tag{5}$$

где интеграл

$$S(T) = \int_{T_{\min}}^{T} k_s \left[W(T') - \frac{d_f}{D_s} Q(T') \right] dT'$$
(6)

характеризует степень дисбаланса между тепловыделением и теплоотводом, $T_{\min} = \max(T_0, T^*)$. При выводе (5) и (6) учтены граничные условия $T(x = \pm \infty) = T_0$, $\frac{\partial T}{\partial x}(x = \pm \infty) = 0$, что выполняется в пренебрежении конечными размерами образца.

Рис. 3. Распределение температуры в образце с резистивным доменом для различных значений K: I - K = 30; 2 - K = 15; 3 - K = 10; 4 - a = 1; 5 - K = 5.

Рис. 4. Вольт-амперная характеристика сверхпроводника с доменом при различных значениях параметра K: 1 - K = 1; 2 - K = 5; 3 - K = 15; 4 - a = 1.

Распределение температуры в домене, полученное в результате численного решения (5) при различных значениях параметра K и для одного значения тока, приведено на рис. 3.

Возрастание максимальной температуры домена T_m с увеличением показателя нелинейности K легко понять из следующих соображений. С ростом K "правило площадей" $S(T_m) = 0$, определяющее T_m , удовлетворяется при более высокой температуре. Последнее объясняется более пологим ходом зависимости Q(T) при $K \ge K^*$. Отметим, что при $K < K^*$ форма домена практически не чувствительна к величине K.

Так как домен представляет собой диссипативную структуру (с конечным сопротивлением), его наличие сопровождается появлением напряжения на сверхпроводнике. Падение напряжения на сверхпроводнике с доменом определяется по формуле [1]:

$$U = \sqrt{2} \int_{T_r}^{T_c} \rho_n k_s j \left(1 - \frac{j_c(T)}{j} \right)^{a(T)} \frac{dT}{\sqrt{S(T)}} + \rho_n j l,$$
(7)

где *l* — размер нормальной зоны домена.

Результат численного расчета (7) для различных K приведен на рис. 4. Точка излома, хорошо видная в логарифмическом масштабе на рисунке, соответствует появлению нормальной области у домена, сопровождающемуся резким ростом напряжения (заметим, что у кривой I такого излома не наблюдается, так как при $K \leq 1$ у домена во всем диапазоне токов отсутствует нормальная область).

Для значений $K > K^*$ характерно появление на ВАХ участка с положительным дифференциальным сопротивлением. Этот факт связан с тем, что начиная с тока j^* ($j^* = j_c(T_0)$) весь сверхпроводник переходит в резистивное состояние с температурой $T^*(j, K) > T_0$, на фоне которой будет существовать домен. При дальнейшем увеличении тока размеры домена уменьшаются, но T^* увеличивается; в результате Uбудет расти, так как при $j > j^*$ падение напряжения будет обусловлено в основном резистивной областью сверхпроводящего мостика. Подчеркнем, что появление участка с положительным наклоном ВАХ не связано с ограниченностью длины сверхпроводящего мостика [1,6].

Работа поддержана Министерством науки РФ (проект 95–057), гособразования РФ (грант 95–0–7.3–178), а также Международным центром перспективных исследований (Н. Новгород; грант 97–2–10).

Список литературы

- [1] Гуревич А.В., Минц Р.Г. Тепловые автоволны в нормальных металлах и сверхпроводниках. М.: Изд-во ИВТАН, 1987. 168 с.
- [2] Fix A.Sh., Maksimov I.L., Morozov K.V., Osipov V.V. // IEEE Trans. on Appl. Superconductivity. 1993. V. 3. P. 168–171.
- [3] Minnhagen P. // Rev. Mod. Phys. 1987. V. 59. P. 1001-1063.
- [4] Blatter G. et al. // Rev. Mod. Phys. 1994. V. 66. P. 1125-1388.
- [5] Луцет М.О., Климов С.В. // СФХТ. 1994. Т. 7. № 8–9. С. 1372–1381.
- [6] Скоков В.Н., Коверда В.П. // СФХТ. 1993. Т. 6. № 8. С. 1646–1651.