12 О возможности увеличения режекции протонов при регистрации первичных электронов космического излучения с помощью ионизационно-нейтронного калориметра

© Г.И. Мерзон, В.А. Рябов, Т. Саито, X. Сасаки, А.П. Чубенко, А.Л. Щепетов

Физический институт им. П.Н. Лебедева РАН, Москва Токийский университет, Япония Университет Кочи, Япония

Поступило в Редакцию 25 августа 1997 г. В окончательной редакции 10 апреля 1998 г.

Измерены выходы нейтронов из свинцового поглотителя толщиной 60 cm в электромагнитных каскадах, инициированных электронами с энергией 200÷600 MeV. Сравнение полученных выходов нейтронов для электронов с результатами аналогичных измерений для протонов и пионов позволяет утверждать, что применение ионизационно-нейтронного калориметра увеличивает фактор режекции протонного фона в $\sim 10^2$ раз при измерении первичных электронов космического излучения в области энергий выше 100 GeV.

Введение

В настоящее время одной из важнейших задач физики космических лучей и астрофизики является измерение энергетического спектра первичных электронов в области энергий выше 100 GeV. Интерес к первичным электронам не случаен. Из-за быстрого роста энергетических потерь ($\sim E_e^2$, где E_e — энергия первичного электрона) на синхронное излучение в магнитном поле нашей Галактики и неупругое рассеяние на реликтовых фотонах (обратный Комптон-эффект) первичные электроны ($E_e > 100$ GeV) могут достигать Земли от близких (≤ 10 kpk) галактических источников, таких как Vela, Geminga, Loop I, II, III, IV. При этом

66

Рис. 1. Энергетический спектр первичных электронов. Обозначения: ∇ — [1]; \diamond — [2,3], ⊢ — [4]; \diamond — [5]; \bullet — [6]; \triangle — [7].

спектр электронов в области E > 1 TeV должен испытывать сильные изменения вплоть до появления больших нерегулярностей, наблюдение за которыми позволило бы установить возраст указанных источников, а также прояснить механизмы генерации космических частиц высокой энергии в этих источниках.

Рис. 1 демонстрирует современное состояние экспериментальных исследований спектра первичных электронов. Как видно из этого рисунка, в области выше 1 TeV экспериментальные данные о спектре полностью отсутствуют. В области (100–1000 GeV) выполнен

ряд измерений, но результаты разных работ противоречивы, что не позволяет сделать определенный вывод о спектре первичных электронов.

Такая ситуация, во многом является следствием трудностей выделения электронов в условиях преобладающего фона от первичных протонов. На рис. 1 для иллюстрации приведен спектр протонов и можно видеть, что при $E \sim 1 \text{ TeV}$ их интенсивность превышает ожидаемую интенсивность электронов более чем в 10^3 раз.

Ясно, что для обеспечения прогресса в исследовании спектра первичных электронов с энергией выше 100 GeV необходима более совершенная экспериментальная методика, отличная от применяемых в [1–7], которая могла бы обеспечить высокую надежность выделения электронов на фоне первичных протонов. Решение этой задачи, по нашему мнению, возможно, если использовать в измерениях новый тип детектора — ионизационно-нейтронный калориметр (ИНКА), возможности которого исследуются в настоящей работе.

Принцип работы ИНКА состоит в следующем. В каждом каскаде, вызванном первичной частицей, измеряется ионизационный сигнал (ионизация, выделенная в поглотителе) и нейтронный сигнал (выход испарительных нейтронов в результате расщепления ядер). Так как выход испарительных нейтронов в ядерных каскадах должен существенно превышать выход нейтронов в электромагнитных каскадах, то отношение нейтронного сигнала к ионизационному может служить фактором разделения электронов и протонов. Чтобы проверить это предположение, нами был проведен ряд исследований на ускорителях У-70 ИФВЭ и С-60 ФИАН. В работе [8] суммированы результаты наших измерений среднего выхода нейтронов $\langle \nu_n \rangle$ и флуктуаций для ядерных каскадов, вызванных пионами ($E_{\pi} = 4 \, {
m GeV}$) и протонами $(E_p = 70 \,\text{GeV})$ ускорителя У-70. В настоящей работе, которая является продолжением [8], исследуется выход нейтронов в электромагнитных каскадах, инициированных электронами с энергией $E_e = 200 \div 600 \, \text{MeV}.$ Эта область энергий в значительной степени определяет выход нейтронов в электромагнитных каскадах, так как включает в себя основные процессы поглощения фотонов, в результате которых образуются нейтроны (гигантский резонанс, фоторасщепление дейтона и образование резонансов $\Delta(1232)$, D₁₃(1520) и P₁₁(1440)).

Экспериментальная установка

В эксперименте использовался ИНКА с поглотителем, содержащим 6 рядов свинца толщиной 10 ст и площадью 20 × 20 ст, прослоенных пластинами полиэтилена толщиной 6 ст. В качестве нейтронных детекторов применялись гелиевые (³He) счетчики СНМ-18 длиной 30 ст и диаметром 3 ст. Для определения эффективности ε регистрации испарительных нейтронов использовались Ро–Ве источники. Среднее значение эффективности составило $\langle \varepsilon \rangle = 7.4 \pm 0.4\%$.

Триггер ИНКА обеспечивал: 1) выделение нейтронного сигнала от одиночной пучковой частицы, проходящей через центр ИНКА; 2) отсутствие перекрытия нейтронных сигналов от двух и более частиц и 3) исключение сигналов фоновых частиц. Более подробно установка описана в [8].

Результаты измерений и их обсуждение

Средний выход нейтрона $\langle \nu_n \rangle$ измерялся при энергиях электронов 200, 300, 400, 500 и 600 MeV. Данные, полученные после вычитания фона и введения необходимых поправок на эффективность регистрации нейтронов, приведены в таблице. Следует заметить, что уровень фона в нашем эксперименте оказался сравним по величине с измеряемым эффектом. Поэтому значения, приведенные в таблице, могут быть несколько завышены из-за недоучета влияния фона.

E_e, MeV	200	300	400	500	600
$\langle u_n angle$	0.08 ± 0.015	0.07 ± 0.01	0.13 ± 0.02	0.28 ± 0.3	0.26 ± 0.03

Для сравнения значений $\langle \nu_n \rangle$ в электромагнитных и ядерных каскадах на рис. 2 представлены как данные для электронов, полученные в настоящей работе, так и результаты наших измерений для пионов и протонов [8]. Там же представлены результаты других экспериментов [9–10], а также расчетные данные [11] для калориметра с бесконечной толщиной свинцового поглотителя и для поглотителя конечной толщины 60 ст Pb (программа SHIELD [12]).

Рис. 2. Зависимость выхода нейтронов $\langle \nu_n \rangle$ в электромагнитных каскадах от электронов и в ядерных — от адронов для Рb. Линия 1 — расчет [11] для бесконечной толщины поглотителя Pb; линия 2 — расчет SHIELD [12] для толщины 60 ст Pb. Обозначения: \blacksquare — [8]; \circ — [9]; \triangle — [10].

Из рис. 2 следует, что: а) результаты наших измерений $\langle \nu_n \rangle$ для пионов и протонов находятся в хорошем согласии с данными других экспериментов и с расчетами по программе SHIELD; б) энергетическая зависимость среднего выхода нейтронов $\langle \nu_n^h \rangle(E)$ в ядерных каскадах имеет вид $\sim E^{0.8}$; в) величина η — отношение выхода нейтронов $\langle \nu_n^e \rangle$

в электромагнитных каскадах к выходу $\langle \nu_n^h \rangle$ в ядерных при энергиях $E = 0.6 \div 1.0 \,\text{GeV}$ составляет $\eta \cong 0.01$.

Для определения энергетической зависимости $\langle \nu_n^e \rangle(E)$ для электронов в области выше 600 MeV мы использовали следующее соотношение:

$$\langle \nu_n^e(E_e) \rangle = \int_0^\infty \int_{E_s}^{E_e} \nu_n(E) N_\gamma(E,t) \frac{dt}{\lambda_\gamma(E)} dE, \qquad (1)$$

где $N_{\gamma}(E, t)$ — число γ -квантов с энергией E на глубине t в электромагнитном каскаде от электрона с энергией E_e ; E_s — пороговая энергия для фоторождения нейтронов на Pb; $\lambda_{\gamma}(E)$ — пробег поглощения γ -квантов с энергией E и $\nu_n(E)$ — число нейтронов, образованных при поглощении γ -кванта энергии E.

Анализируя соотношение (1) с привлечением данных о сечениях поглощения γ -квантов [13] и результатов электромагнитной каскадной теории [14,15], можно сделать следующие выводы: I) полученные значения $\langle \nu_n^e \rangle$ для электронов в пределах 20% согласуются с данными, ожидаемыми исходя из сечения поглощения γ -квантов [13]; II) энергетическая зависимость $\langle \nu_n^e \rangle (E_e)$ в области $E_e > 600$ MeV имеет вид:

$$\langle \nu_n^e \rangle(E_e) \cong 4 \cdot 10^{-4} \cdot E_e \,(\text{MeV});$$
 (2)

III) для Pb вклад в коэффициент при E_e формулы (2) процессов фоторождения области $E_s > 1$ GeV не превышает 10%.

Совпадение экспериментальных и расчетных значений выходов $\langle \nu_n^e \rangle (E_e)$ из (1) убеждает в надежности использования формулы (2) для проведения экстраполяции в область $E_e > 600$ MeV. Соответствующая (2) экстраполяция представлена на рис. 2. Как можно видеть, несмотря на увеличение η с ростом энергии ($\sim E^{0.2}$), при 100 GeV $\eta < 1/20$.

Используя данное значение η и распределения флуктуаций величины ν_n^h [8] в ядерных каскадах от протонов и пионов, измеренные в наших экспериментах, можно оценить вероятность ρ -имитации протоном каскада от электрона (коэффициент режекции) для фиксированной энергии первичной частицы. Для нашего ИНКА ($\varepsilon = 7.4\%$) такие оценки дают: $\rho \leq 8\%$ при $E_{\pi} = 4$ GeV и $\rho \cong 2\%$ при $E_p = 70$ GeV. Заметим, что величина ρ уменьшается не только с ростом энергии адрона, но и с увеличением ε так, что при $\varepsilon \to 100\% \rho$ падает до значения $\sim 10^{-3}$.

При исследовании первичных электронов имеются два фактора, понижающие фон от первичных протонов, что всегда используется в экспериментах: 1) точка начала каскада должна находиться на глубине \leq 1 радиационной длины, что дает коэффициент режекции ~ 1/30 (отношение 1 радиационной длины Pb к пробегу взаимодействия протона в Pb); и 2) падающий энергетический спектр первичных протонов приводит к тому, что интенсивность γ -квантов (которые имитируют электромагнитные каскады от электронов) меньше интенсивности протонов на фактор $\langle K_{\gamma}^{\beta} \rangle$, где β — показатель наклона спектра протона, а K_{γ} — доля энергии, передаваемая γ -квантам в p-Pb взаимодействиях. Поскольку для спектра протонов $\beta \cong 1.5$, а $\langle K_{\gamma} \rangle \cong 0.18-0.20$ [16], то $\langle K_{\gamma}^{\beta} \rangle \cong 1/20-1/40$. Объединение этих двух факторов понижает фон от протонов более чем в 400 раз.

Так как ИНКА имеет дополнительный коэффициент режекции $\rho \leq 10^{-2}$ для $E_e > 100$ GeV, то его применение для измерений спектра первичных электронов с энергией выше 100 GeV позволяет достигать режекции протонов масштаба $10^{-4} \div 10^{-5}$.

Авторы выражают глубокую признательность В.А. Цареву за постоянное внимание и поддержку этой работы.

Работа выполнена при финансовой поддержке РФФИ, грант № 97-02-17867.

Список литературы

- [1] Anand K.C., Daniel R.R., Stephens S.A. // Acta Phys Hung. 1970. V. 29. Suppl 1. P. 229.
- [2] Nishimura J., Mikimo E. et al. // Acta Phys Hung. 1970. V. 29. Suppl. 1. P. 229.
- [3] Taira T., Nishimura J., Fujii M. et al. // Proc. 23th ICRC. 1993. V. 2. OG. P. 128–131.
- [4] Meyer P., Müller D. // Proc 12th ICRC. 1971. V. 1. P. 117.
- [5] Busini G., Belletti R. et al. // Proc. 24th ICRC. 1995. V. 3. P. 1-4.
- [6] Golden R.L. et al. // Ap. J. 1994. V. 436. P. 769.
- [7] Buffington A. et al. // Ap. J. 1975. V. 199. P. 669.
- [8] Аммосов В.В., Мерзон Г.И., Саито Т. и др. // Письма в ЖТФ (в печати).
- [9] Vassilkov R.G., Yurevich V.I. // KEK. Report 90-25. 1991. V. 1. P. 340.
- [10] Barashenko V.S. // Nucl. Part. Phys. 1978. V. 9. P. 340.
- [11] Гельфанд Е.К., Манько Б.В., Сычев Б.С. // Изв. АН. Сер. физ. 1994. Т. 58. В. 12. С. 41.

- [12] Dementyev A.V., Sobolevsky N.M., Stavissky Yu.Yu. // Nucl. Instr. Meth. 1996. A 374. P. 70–72.
- [13] Review of Particle Properties // Phys. Letters. B.1988. V. 204. P. 122.
- [14] *Беленький С.З.* // Лавинные процессы в космических лучах. И.: Гостехиздат, 1948. 243 с.
- [15] Росси Б., Грейзен К. // Взаимодействие космических лучей с веществом. М.: Ин. лит., 1948. 132 с.
- [16] Павлюченко В.П., Нам Р.А., Никольский С.И. и др. // Труды ФИАН. Т. 109. С. 31. (1979).