05.2;06.3;07

Оптимизация контраста, яркости и амплитуды модуляции света в электрооптических устройствах на основе капсулированных полимером сегнетоэлектрических жидких кристаллов

© В.Я. Зырянов, С.Л. Сморгон, А.В. Шабанов, Е.П. Пожидаев Институт физики им. Л.В. Киренского СО РАН, Красноярск

Поступило в Редакцию 10 декабря 1997 г.

Проведен анализ соотношений, связывающих величину максимального светопропускания, амплитуду модуляции света и контраст с геометрией КПСЭЖК устройства и углом наклона молекул θ . Корректность проведенных расчетов подтверждается их согласием с экспериментальными измерениями.

Планарно-ориентированные пленки капсулированных полимером сегнетоэлектрических жидких кристаллов (КПСЭЖК) [1,2] можно использовать для модуляции плоскополяризованного света [3–5] за счет эффекта управляемого электрическим полем светорассеяния. Данный материал изготовлен таким образом [1–5], что директор ЖК во всех каплях сориентирован преимущественно в одном направлении в плоскости пленки. Такая пленка полупрозрачна для света, поляризованного перпендикулярно директору, если показатель преломления полимерной матрицы равен обыкновенному (в приближении оптической одноосности) показателью преломления СЭЖК. В то же время свет, поляризованный параллельно директору, сильно рассеивается. Приложение переменного электрического поля приводит к модуляции ориентации директора в плоскости пленки с амплитудой 2θ , где θ — угол наклона молекул СЭЖК к плоскости смектических слоев.

Амплитуда изменения светопропускания при модуляции проходящего через КПСЭЖК пленку плоскополяризованного света определяется из соотношения [3–5]:

$$\Delta T = (T_{\perp} - T_{\parallel}) \sin 2\alpha \sin 2\theta, \qquad (1)$$

Рис. 1. Зависимости контраста *C*, максимального светопропускания T_{max} и амплитуды модуляции светопропускания ΔT от угла α , рассчитанные с использованием (1)–(3). На вставке показана относительная ориентация поляризатора *P*, нормали *N* к смектическим слоям и директора СЭЖК.

где $T_{\perp} = I_{\perp}/I_0$, $T_{\parallel} = I_{\parallel}/I_0$ — светопропускание для излучения, поляризованного перпендикулярно и параллельно директору СЭЖК; I_0 — интенсивность компонент падающего света; I_{\perp} , I_{\parallel} — интенсивность соответствующих компонент прошедшего излучения; α — усредненное по ансамблю капель значение угла между нормалью к смектическим слоям и плоскостью поляризации падающего света (см. вставку на рис. 1).

В ряде случаев, особенно в дисплейных устройствах, более важными светотехническими характеристиками являются контраст и яркость, а не амплитуда ΔT модуляции светопропускания. Целью данной работы является анализ возможности оптимизации вышеперечисленных характеристик КПСЭЖК устройств в геометрии с одним поляризатором [1–5].

Для приготовления образцов КПСЭЖК пленки использовался сегнетоэлектрический жидкий кристалл ЖКС-285 (ФИРАН) с температурами фазовых переходов Cr–(–2°C)–SmC*–57°C–SmA–112°C–Is, который

Письма в ЖТФ, 1998, том 24, № 12

смешивался с поливинилбутиралем в пропорции 4:6. Угол наклона молекул θ для ЖКС-285 при комнатной температуре составляет 27°. Толщина пленки — примерно 5 μ m. Планарно-ориентированное состояние пленки достигалось посредством сдвиговой деформации. Компоненты светопропускания ($\lambda = 0.633 \,\mu$ m) составляли $T_{\perp} = 0.53$; $T_{\parallel} = 0.008$. Электрооптические измерения проводились с использованием синусоидального электрического сигнала частотой 1 kHz.

Ограничимся рассмотрением диапазона $0-90^{\circ}$ изменения величины угла α (см. вставку на рис. 1). Максимальное светопропускание, достигаемое при модуляции светового сигнала и определяющее максимальную яркость устройства, рассчитывается из соотношения

$$T_{\max} = T_{\perp} \sin^2(\alpha + \theta) + T_{\parallel} \cos^2(\alpha + \theta) = T_{\parallel} + (T_{\perp} - T_{\parallel}) \sin^2(\alpha + \theta).$$
(2)

В нашем случае T_{max} достигает максимального значения, равного T_{\perp} , при $\alpha + \theta = 90^{\circ}$, т.е. при $\alpha = 90^{\circ} - \theta = 63^{\circ}$ (рис. 1).

Как следует из (1), максимальная амплитуда модуляции света (амплитуда модуляции светопропускания ΔT) при любой величине угла θ будет соответствовать значению угла $\alpha = 45^{\circ}$ (рис. 1).

Зависимость контраста от угла α определяется формулой

$$C = \frac{T_{\max}}{T_{\min}} = \frac{T_{\perp} \sin^2(\alpha + \theta) + T_{\parallel} \cos^2(\alpha + \theta)}{T_{\perp} \sin^2(\alpha - \theta) + T_{\parallel} \cos^2(\alpha - \theta)},$$
(3)

из которой следует, что С достигает максимума при

$$\alpha = 0.5 \arccos\left(\frac{T_{\perp} - T_{\parallel}}{T_{\perp} + T_{\parallel}} \times \cos 2\theta\right).$$
(4)

Следует обратить внимание, что угол α в (4) зависит не только от величины угла наклона молекул θ , но и от анизотропии светопропускания образца. Однако если отношение T_{\parallel}/T_{\perp} мало, то угол $\alpha \simeq \theta$. В нашем случае $\alpha \simeq 27.6^{\circ}$. Из (3) следует, что для таких образцов максимальную величину контраста КПСЭЖК устройства можно оценить с использованием приближенного соотношения

$$C_{\max} \simeq 1 + (T_{\perp}/T_{\parallel} - 1)\sin^2 2\theta \simeq T_{\perp}/T_{\parallel}\sin^2 2\theta.$$
 (5)

Как видно, вышеперечисленные характеристики КПСЭЖК устройства в общем случае достигают максимума при различных значениях

5 Письма в ЖТФ, 1998, том 24, № 12

Рис. 2. Контраст *C*, максимальное светопропускание T_{\max} и амплитуда модуляции светопропускания ΔT в зависимости от приложенного напряжения, измеренные при $\alpha = 45^{\circ}$ (*a*) и $\alpha = 27^{\circ}$ (*b*).

угла α , причем положения максимумов для контраста и максимального светопропускания зависят от величины угла θ . Положения максимумов сближаются при увеличении угла θ и совпадают, если $\theta = 45^{\circ}$. Однако СЭЖК с углом наклона молекул $\theta = 45^{\circ}$ являются экзотикой. Большая

Письма в ЖТФ, 1998, том 24, № 12

часть коммерчески доступных СЭЖК имеют угол наклона θ в пределах 0–30°; в СЭЖК, специально приготовленных для ячеек Кларка–Лагервола [6], угол $\theta \simeq 22.5^{\circ}$. Анализ соотношений (1)–(5) позволяет оценить диапазон вариации значений соответствующих параметров и возможности из оптимизации посредством изменения относительной ориентации поляризатора и КПСЭЖК пленки.

В качестве иллюстрации на рис. 2, *a*, *b* показаны амплитуда модуляции светопропускания, контраст и максимальное светопропускание в зависимости от приложенного напряжения для угла $\alpha = 45^{\circ}$ (рис. 2, *a*) и $\alpha = 27^{\circ}$ (рис. 2, *b*). При $\alpha = 45^{\circ}$ контраст едва достигает значения 10. Поворот поляризатора до $\alpha = 27^{\circ}$ приводит к увеличению контраста до 43, при этом максимальное светопропускание уменьшается примерно на 20%, а амплитуда модуляции света уменьшается на 10%. Как видно, наблюдается хорошее согласие величины измеренных характеристик в области насыщения (рис. 2, *a*, *b*) с расчетными данными (рис. 1).

Работа финансировалась по гранту 2.3 ГНТП "Физика квантовых и волновых процессов".

Список литературы

- Zyryanov V.Ya., Smorgon S.L., Shabanov V.F. // IV Intern. Top. Meet. on Optics of Liquid Crystals, Abstracts, 1991. P. 70–71.
- [2] Zyryanov V.Ya., Smorgon S.L., Shabanov V.F. // Summer European Liquid Crystals Conf. Abstracts. 1991. P. 141.
- [3] Zyryanov V.Ya., Smorgon S.L., Shabanov V.F. // Digest SID. 1992. V. 23. P. 776– 777.
- [4] Зырянов В.Я., Сморгон С.Л., Шабанов В.Ф. // Письма в ЖЭТФ. 1993. Т. 57.
 В. 1. С. 17–20.
- [5] Zyryanov V.Ya., Smorgon S.L., Shabanov V.F. // Proceedings SPIE. 1995. V. 2731.
 P. 189–194.
- [6] Clark N.A., Lagerwall S.T. // Appl. Phys. Lett. 1980. V. 36 (11). P. 899-901.

5* Письма в ЖТФ, 1998, том 24, № 12