Голографическая память, основанная на угловой спекл-селективности объемных голограмм

© В.Б. Марков

07

Институт прикладной оптики НАН Украины, Киев Центр исследований по физике, Богота, Колумбия

Поступило в Редакцию 17 ноября 1997 г.

Проанализирована возможность накапливания информации, использующая угловую спекл-селективность объемных голограмм. Продемонстрирована возможность построения высокоемких элементов памяти на основе таких голограмм.

1. Селективные свойства объемных голограмм (ОГ) неоднократно обсуждались в связи с возможностью создания на их основе высокоемких систем памяти [1–3]. Было показано [4], что предельная плотность информации N в ОГ ($N \sim \lambda^3 \approx 10^{12}$ bit/cm³) определяется длиной волны λ излучения. При этом в качестве основного механизма, позволяющего осуществить многократную запись, предлагается угловая или спектральная селективность ОГ [5–7].

К недостаткам методов накопления информации, основанных на дисперсионных свойствах голограмм, следует отнести избирательный характер угловой и спектральной селективности. В связи с этим последовательная регистрация голограмм осуществляется преимущественно в плоскости дисперсии решетки. Кроме того, осциллирующая как $\sin(x)/x$ зависимость интенсивности дифрагированного сигнала $I_D(\delta\theta, \delta\lambda)$ при разьюстировке от условий Брэгга приводит к ухудшению соотношения сигнал-шум [8–9].

В настоящей работе анализируется возможность накопления информации, используя особенности угловой селективности объемных голограмм, регистрируемых с опорной спекл-волной (ОГСВ).

2. Рассмотрим ОГ, сформированную плоской $S_0(r) = s \cdot \exp(-i\boldsymbol{\sigma}\mathbf{r})$ и спекл-волной $R_0(r)$. Предполагается, что восстановление осуществляется спекл-волной, пространственная структура которой идентична

88

записывающей $R_0(r)$, а угол восстановления (θ_{reg}) отличается от записывающего: $\theta_{reg} = \theta_{rec} \pm \delta \theta_A (\delta \theta_A \ll \theta_{rec})$, здесь θ_{rec} соответствует углу схождения пучков на этапе записи). В этом случае нормированная интенсивность дифрагированного пучка $I_{ND}(\delta \theta_A)$ описывается выражением [10]:

$$I_{ND}(\delta\theta_{SP}) = \frac{I_D(\delta\theta_A)}{I_{D_{\max}}} = \left(\frac{4d}{k_0}\right)^4 \frac{1}{(DLT\delta\theta_A)^2} \\ \times \left|\int_0^{T\delta\theta_A} \frac{1}{v^2} \exp\left[\frac{ik_0}{d}v^2\right] J_1\left(\frac{k_0D}{2d}v\right) J_1\left(\frac{k_0L}{2d}v\right) dv\right|^2, \quad (1)$$

где $v = \delta \theta_A z$; $dv = \delta \theta_A dz$; $I_{D_{max}}$ — интенсивность дифрагированного пучка при $\delta \theta_A = 0$; T — толщина голограммы; d — расстояние диффузор-голограмма; D и L — сечение освещенной части диффузора и голограммы соответственно; $|\mathbf{k}_0| = 2\pi/\lambda$ — волновой вектор считывающего спекл-пучка; $J_1(x)$ — функция Бесселя первого рода.

В выражении (1) члены вида $J_1(k_0 D_H \nu/2d)$ и $J_1(k_0 L \nu/2d)$ описывают рассогласование считывающего поля и зарегистрированной в объеме голограммы структуры при $\delta\theta_A \neq 0$. На рис. 1 представлена полученная из (1) зависимость $I_{ND}(\delta\theta_A)$, а также рассчитанная в соответствии с [5] зависимость $I_{GR}(\delta\theta_A)$ для голограммы плоских волн. Как следует из приведенных данных, селективность $\Delta\theta_{SP}$ ОГСВ (определяемая как величина $\delta\theta_A$ при 0.5 I_{ND}) связана со средним размером спекла ($\langle \sigma_{\perp} \rangle = 1.22\lambda L/d$) и при идентичных условиях записи может быть "сильнее" селективности кросс-решетки $\Delta\theta_{GR}$. Кроме того, из сравнения зависимостей $I_{ND}(\delta\theta_A)$ и $I_{GR}(\delta\theta_A)$ следует, что селективность ОГСВ имеет монотонный характер, в отличие от осциллирующей зависимости $I_{GR}(\delta\theta_A)$ у кросс-решетки.

3. Голограммы с опорной спекл-волной записывались излучением одночастотного лазера с $\lambda = 530$ nm в несимметричной геометрии ($\theta_R = 0^\circ$ и $\theta_S = 15^\circ$, период кросс-решетки $\Lambda \approx 2.0 \,\mu$ m). В качестве регистрирующей среды использовались кристаллы LiNbO₃ : Fe (0.02 вес.%) толщиной T = 1.5 mm.

При измерении угловой селективности таких голограмм их восстановление осуществлялось спекл-волной. Изменение величины угла $\theta_{reg} \neq \theta_{rec}$ приводило к уменьшению значения I_{ND} . Экспериментальная зависимость $I_{ND}(\delta\theta_A)$ при повороте голограммы в плоскости дисперсии

Рис. 1. Зависимость нормированной интенсивности дифрагированного пучка I_{ND} от углового рассогласования $\delta\theta_A$ для нескольких значений среднего размера спекла $(I_{ND1} - \sigma_{\perp} = 5.0 \,\mu\text{m}; I_{ND2} - \sigma_{\perp} = 8.0 \,\mu\text{m})$ и угловой селективности решетки плоских волн в плоскости дисперсии I_{GR} и перпендикулярном направлении $I_{\perp GR}$. Экспериментальные зависимости угловой спекл-селективности при $\sigma_{\perp} \approx 8.0 \,\mu\text{m}$: I — поворот в плоскости дисперсии решетки; 2 — поворот в перпендикулярной плоскости.

и перпендикулярном направлении показана на рис. 1. Как следует из приведенных данных, важной особенностью ОГСВ является отсутствие зависимости угловой спекл-селективности $\Delta \theta_{SP}$ от направления разьюстировки. Это существенно отличает ее от голограммы плоских

Рис. 2. "Элемент памяти", формирующийся в результате последовательного опроса голограммы опорной спекл-волной при угловом рассогласовании в двух ортогональных направлениях.

волн [5]. Кроме того, приведенные зависимости подтверждают возможность записи голограммы, угловая селективность которой превышает селективность кросс-решетки, записанной в аналогичных условиях.

4. Описанный выше механизм угловой селективности ОГСВ позволяет осуществлять многократную запись информации и на ее основе формировать элемент памяти. В экспериментальной реализации такого элемента последовательная запись осуществлялась при изменении угла падения θ_{rec} спекл-волны. Угловая отстройка $\delta \theta_A \leq 8'$ подбиралась из условия $\delta \theta_A \gg \Delta \theta_{SP} \approx 1'$, обеспечивающего существенное подавление интенсивности суммарного сигнала ($I_{D\Sigma} \leq 10^{-2} I_{D_{max}}$), формирующегося вследствие дифракции восстанавливающей волны на остальных голограммах.

На рис. 2 представлена пространственно-угловая структура дифракционных максимумов, формирующихся при восстановлении элемента голографической памяти, основанного на механизме угловой спеклселективности. Каждому максимуму I_{Di} соответствует угол восста-

новления $\delta\theta_{Ai}$, изменение которого приводит к последовательному считыванию сигнальной волны. Из рис. 2 видно, что контур угловой селективности $\Delta\theta_{SP}$ остается постоянным и его значение не зависит от направления считывания.

При анализе плотности записи информации за счет механизма угловой спекл-селективности отметим осесимметричный характер зависимости $I_{ND}(\delta\theta_A)$ в плоскости регистрирующей среды, что обусловлено статистической однородностью распределения интенсивности в структуре опорного пучка в этой плоскости. Количество голограмм N, последовательно регистрируемых в объеме кристалла, может быть оценено как

$$N = \frac{4\pi\psi}{(\delta\theta_A)^2},\tag{2}$$

где ψ — диапазон углов, в котором возможна запись ($0 < \psi < 90^{\circ}$). Из (2) с учетом приведенных выше данных для $\Delta \theta_{SP}$ (рис. 1) получим оценку для количества голограмм $N \approx 10^7$, что в $2\pi/(\delta \theta_A)$ раз превышает соответствующую величину при записи плоскими волнами [3,11].

5. По аналогии с [1,3,9] отношение сигнал-шум голографического элемента памяти, основанного на спекл-угловой селективности, может быть рассчитано как

$$SNR = \frac{I_{qD}}{\sum\limits_{m \neq q}^{N} I_{mD} + I_{PC}}.$$
(3)

где I_{qD} и I_{mD} — измеряемые значения полезного сигнала и шума. Последний возникает при дифракции считывающей волны на *m*-й голограмме. I_{PC} — шумы, определяемые характеристиками регистрирующей среды.

Выражение (3) в условиях формирования спекл-волны при освещении диффузора пучком с гауссовым распределением интенсивности (для расчета выражения (1)) и без учета шумов среды I_{pc} может быть преобразовано к

$$SNR = \frac{I_{qD}}{\sum\limits_{m \neq q}^{N} \exp\left[(m\delta\theta_A - \Delta\theta_{SP})^2\right]}.$$
 (4)

Из (4), с учетом полученных для $\delta\theta_{SP}$ данных (рис. 1, 2), расчетное значение SNR составляет $\sim 10^{-3}$ при записи 10^4 голограмм.

6. В заключение отметим, что в настоящей работе проведен анализ особенностей угловой селективности объемных голограмм спеклструктуры и продемонстрирована возможность построения на основе таких голограмм высокоемких элементов памяти.

Автор выражает благодарность Колумбийскому институту по развитию науки и техники "COLCIENCIAS" за частичную поддержку работ в рамках проекта № 28–05–401–93.

Список литературы

- [1] Микаэлян А.Л. // Оптические методы в информатике. М.: Наука, 1990.
- [2] Bradly D., Psaltis D. // Opt. Quantum Electron. 1993. V. 25. P. 597.
- [3] Hong J., McMichel I., Chang T., Christian W., Paek E. // Opt. Eng. 1995.
 V. 34. P. 2193.
- [4] Van Heerden P.J. // Appl. Opt. 1963. V. 2. P. 393.
- [5] Kogelnik H. // Bell Syst. Techn. J. 1969. V. 48. P. 2909.
- [6] Bradly D., Psaltis D. // Opt. Soc. Am. A. 1992. V. 9. P. 1167.
- [7] Mok F. // Opt. Lett. 1993. V. 18. P. 915.
- [8] Lee H. // Opt. Lett. 1988. V. 13. P. 874.
- [9] Curtis K., Gu C., Psaltis D. // Opt. Lett. 1993. V. 18. P. 1001.
- [10] Markov V.B. // J. Imag. Sci. & Techn. 1997. V. 41. P. 70.
- [11] Rastani K. // Appl. Opt. 1993. V. 32. P. 3772.