05;06;11;12

Кинетика инкорпорирования As₄ в молекулярно-лучевой эпитаксии GaAs (001)

© Ю.Г. Галицын, И.И. Мараховка, С.П. Мощенко, В.Г. Мансуров Институт физики полупроводников СО РАН, Новосибирск

Поступило в Редакцию 18 ноября 1997 г.

Предложена кинетическая модель эпитаксиального роста на Ga-стабилизированной поверхности (001) GaAs из пучков As₄ и Ga. Рассмотрены элементарные процессы на поверхности: адсорбция–десорбция As₄, бимолекулярная реакция As₄^{*}, встраивание As₂^{xim} в узлы решетки. Модель корректно описывает экспериментальные результаты по скорости роста для низких и высоких давлений As₄. Анализируется роль десорбции As₄ с поверхности в эпитаксиальном росте кристаллов GaAs.

Гомоэпитаксиальная ростовая система (001) GaAs из пучков As₄ и Ga является наиболее изученной и может служить в качестве модельной системы в рассмотрении элементарных процессов молекулярно-лучевой эпитаксии (МЛЭ) [1–7]. Однако и для этой системы имеются существенные разногласия в трактовке кинетики и механизмов роста.

Во-первых, если в работах [1,5–7] считается, что диссоциативная хемосорбция As₄ является бимолекулярной, то авторы работы [2] интерпретировали некоторые результаты по росту в рамках мономолекулярной диссоциации As₄.

Во вторых, при исследовании температурной зависимости коэффициента инкорпорирования тетрамера мышьяка (S) при относительно высоких давлениях ($P \ge 3 \cdot 10^{-6}$ Torr) выявилась очень слабая вариация S с температурой [1,2]. К примеру, в [1] при $T \simeq 570^{\circ}$ C $S \simeq 0.415$, а при $T \simeq 360^{\circ}$ C $S \simeq 0.495$. Полное изменение S составляет $\sim 20\%$. Однако исследования, выполненные по росту в работах [6–8] при $P \le 10^{-6}$ Torr в температурной области 500 $\div 600^{\circ}$ C, показали, что коэффициент инкорпорирования изменяется в несколько раз. Столь значительные температурные изменения скорости роста (или S) при относительно низких давлениях в рамках кинетической модели роста, предложенной авторами в [1], не имеют места.

31

В данной работе предлагается кинетическая модель роста GaAs (001) из пучков As₄ и Ga, учитывающая область как высоких, так и низких давлений мышьяка (As₄).

Обычно кинетика инкорпорирования мышьяка в росте исследуется по осцилляциям интенсивности зеркального рефлекса в дифракции быстрых электронов на отражение (ДБЭО), которые индуцируются падающим потоком As₄ на Ga-стабилизированную поверхность с неконтролируемым количеством Ga на поверхности [1,3,8]. Мы использовали альтернативную подачу Ga и As₄ на поверхность с точно заданной концентрацией Ga на поверхности и измеряли методом ДБЭО время превращения (t) галлия в двумерный эпитаксиальный слой GaAs для тех или иных значений температуры образца (T) и давления мышьяка As₄ (P) [6,7].

Зависимость времени превращения одного монослоя галлия t (или величины V = 1/t) от P и T анализировалась нами в рамках следующей кинетической схемы:

$$\begin{array}{c} \operatorname{As}_{4}^{\operatorname{ra3}} \stackrel{k_{1}}{\underset{k_{2}}{\leftrightarrow}} \operatorname{As}_{4}^{*},\\\\ \operatorname{2As}_{4}^{*} \stackrel{k_{3}}{\longrightarrow} \operatorname{2As}_{2}^{\operatorname{xhm}} + \operatorname{As}_{4}^{\operatorname{ra3}} \uparrow,\\\\ \operatorname{As}_{2}^{\operatorname{xhm}} + \operatorname{2Ga} \stackrel{k_{4}}{\longrightarrow} \operatorname{2GaAs},\\\\ \operatorname{As}_{2}^{\operatorname{xhm}} \stackrel{k_{5}}{\longrightarrow} \operatorname{As}_{2}^{\operatorname{ra3}} \uparrow. \end{array}$$

Здесь k_i являются элементарными константами простых реакций.

Для них можно принять аррениусовскую аппроксимацию $k_i = k_i^0 \exp(-E_i/kT)$. k_1 , k_2 являются константами адсорбционнодесорбционного процесса взаимодействия газовых (As_4^{ra3}) и адсорбированных (As_4^*) в "precursor state" молекул с поверхностью. k_3 — константа реакции бимолекулярного взаимодействия As_4 , приводящей к диссоциации молекул As_4^* и образованию двух хемосорбированных As_2^{xum} , с одновременной десорбцией в вакуум одной молекулы As_4^{ra3} . Этот процесс диссоциативной химической адсорбции As_4^* был впервые предложен Фоксоном и Джойсом в работе [9]. Данная бимолекулярная реакция на поверхности аналогична реакции Лэнгмюра–Хиншелвуда и, как мы покажем далее, более адекватно описывает экспериментальные результаты по росту, чем мономолекулярная диссоциация As_4^* , предложенная в [2]. Более того, этот процесс определяет максимальный

Рис. 1. Схема элементарных стадий эпитаксиального роста на Ga-стабилизированной поверхности (4×2) . Черные большие и малые шары — поверхностные атомы мышьяка и галлия соответственно. Белые шары — атомы новой фазы GaAs. Атомы галлия, не связанные с мышьяком, на схеме не указаны. Стрелка указывает возможное направление роста критического зародыша "4GaAs".

коэффициент инкорпорирования As₄ — S = 0.5 [9]. Реакция с константой k_4 есть процесс встраивания As₂^{xHM} в решеточные узлы, т.е. $1/t = V = k_4 [As_2^{XHM}]$ является скоростью эпитаксиального роста или скоростью образования новой фазы GaAs. В наших исследованиях [6,7] было показано, что реакция встраивания имеет нулевой порядок по концентрации галлия. Десорбция As₂^{xHM} описывается реакцией с константой k_5 . Для GaAs эта реакция существенна в температурной области выше 600°С. На рис. 1 мы схематично показали элементарные стадии роста на Ga-стабилизированной поверхности (4 × 2). Из приведенной выше схемы для скорости V в условиях стационарности по промежуточным продуктам As₄^x и As₂^{xHM}, имеем

$$V = \frac{k_4}{k_4 + k_5} \cdot k_3 \cdot \left(\frac{k_2 + k_1 P}{2k_3}\right)^2 \cdot \left(\sqrt{1 + x} - 1\right)^2, \tag{1}$$

где $x = k_1 P/k_3 \cdot ((k_2 + k_1 P)/2k_3)^{-2}$. Все константы k_i , $k_1 P$ и поверхностные концентрации промежуточных частиц нормированы так, что размерность скорости эпитаксиального роста V выражена в монослоях в секунду.

Параметр *х* имеет простой физический смысл. Это есть отношение двух стационарных концентраций C_1 , C_2 , т.е. $x = 4C_1/C_2$. $C_1 = k_1 P/(k_2 + k_1 P)$ является стационарной концентрацией As₄^{*} обычного адсорбционно-десорбционного процесса взаимодействия молекул As₄ с поверхностью, без учета бимолекулярной диссоциативной хемосорбции As₄. $C_2 = (k_2 + k_1 P)/k_3$ есть стационарная концентрация As₄^{*}, при которой мономолекулярный десорбционный поток k_2C_2 сравнивается с бимолекулярным реакционным потоком $k_3C_2^2$ ($k_2C_2 = k_3C_2^2$).

Так как мы анализируем процессы роста на Ga-стабилизированной поверхности GaAs, обе нормированные концентрации As₄ много меньше единицы (C_1 , $C_2 \ll 1$). При $k_1 P \ll k_2$ имеем

$$V = A(T) \cdot k_3 \cdot \left(\frac{k_2}{2k_3}\right)^2 \cdot \left(\sqrt{1 + 4C_1/C_2} - 1\right)^2,$$
 (2)

где $A(T) = k_4/(k_4 + k_5)$. Оценки показывают, что при $P \sim 10^{-7} \div 10^{-6}$ Тогг и $T \sim 600 \div 570^{\circ}$ С концентрация C_1 лежит в области $10^{-7} \div 10^{-6}$, тогда как C_2 в области $10^{-6} \div 10^{-5}$ долей монослоя.

$$V \simeq A(T) \cdot k_3 \cdot \left(\frac{k_1 P}{k_2}\right)^2 = B(T)P^n = V_0 \cdot \exp(E_{3\phi\phi}/kT)$$
(3)

с эффективной энергией активации $E_{3\phi\phi} = 2E_2 - E_3 - 2E_1$. Такая экспоненциальная зависимость скорости роста от обратной температуры для достаточно низких давлений As₄ экспериментально обнаружена в наших работах [6,7] и в работе [8] (см. вставку на рис. 2). Нелинейность скорости роста от давления As₄^{*} наблюдалась в этих работах с показателем $n \simeq 1.5$ в [6,7] и $n \simeq 1.4$ в [8].

Для обычно применяемых давлений As₄ всегда реализуется условие $4k_3/k_1P \gg 1$, тогда для другого предельного случая $k_1P \gg k_2$ имеем

$$V = \frac{k_4}{k_4 + k_5} \cdot k_1 P = A(T) \cdot k_1 P.$$
 (4)

Экспериментально такая линейная зависимость скорости роста от P также наблюдалась в наших исследованиях и в работах [1,8] для области относительно высоких давлений $P > 2 \cdot 10^{-6}$ Torr и относительно низких температур $T < 570^{\circ}$ C. В этой области температур и давлений происходит интенсивный рост новой фазы GaAs ($S \simeq 0.5$). Тогда проблема, которая возникает при таком анализе эпитаксиального роста на Ga-стабилизированной поверхности (001) GaAs состоит в следующем. Может ли в действительности реализоваться условие $k_1P \gg k_2(T)$. Константа $k_2 = k_2^0 \cdot e^{-E_2/kT}$ хорошо определена для низких температур $T \leq 150^{\circ}$ C, $k_2^0 \simeq 0.625 \cdot 10^8$ 1/s и $E_2 \simeq 0.4$ eV [9]. В области температур от 150 до 600°C она изменяется от 2.4 · 10³ 1/s до 3 · 10⁵ 1/s (рис. 2). Поэтому даже с учетом увеличения давления As₄ до 10⁻⁵ Torr реализовать условие $k_1P \gg k_2$ невозможно. При $P \sim 10^{-5}$ Torr $k_1P \sim 10^2$ 1/s, в то же время $k_2 \gg 10^2$ 1/s в температурном диапазоне от 150°C и выше.

Возможно, что экстраполяция $k_2(T)$ от низких температур к высоким недействительна? В работе [8] определен десорбционный поток As^{*} при давлении $P \simeq 10^{-6}$ Тогг для области температур $T > 580^{\circ}$ С. Экстраполяция температурной зависимости $K_2(T)$ на данную высокотемпературную область приводит к правильной величине измеренного десорбционного потока. Этот поток при $T \simeq 635^{\circ}$ С — приблизительно один монослой в секунду ($J_{\text{дес}} = k_2(T) \cdot C \simeq 10^6 \cdot 10^{-6} \simeq 1$ монослой

Рис. 2. Температурная зависимость десорбционной константы $k_2(T)$. Пунктирные линии определяют область интенсивного эпитаксиального роста $S \simeq 0.5$. Линия A-A проведена при $P \simeq 10^{-6}$ Тогг. Увеличение, уменьшение давления As₄ приводит к сдвигу линии A-A в высокотемпературную или низкотемпературную область соответственно. Линия B-B проведена по данным работы [9]. На вставке аррениусовские графики скорости роста при различных давлениях As₄. I — экспериментальные данные нашей работы, 2 — экспериментальные данные работы [8].

в секунду). Следовательно, нет оснований считать, что десорбционная константа $k_2(T)$ резко изменяется в промежуточной температурной области, где интенсивно происходит эпитаксиальный рост и верно выражение (4) (рис. 2). Возникает вопрос, почему для данной температурной области десорбционный поток подавлен? Более того, при заданном давлении *P* переход от экспоненциальной зависимости скорости (3) к скорости (4), практически независимой от температуры, происходит в очень узком температурном интервале (ΔT), к примеру, $\Delta T \sim 3 \div 5^{\circ}$ С вблизи $T = 543^{\circ}$ С [8]. Мы полагаем, что переход к

интенсивному эпитаксиальному росту (где $S \simeq 0.5$) связан с резким изменением соотношения между десорбционным (k_2C) и реакционным (k_3C^2) потоками.

Уменьшение температуры роста при данном давлении мышьяка или увеличение давления при данной температуре приводит к преодолению обычного термодинамического барьера по отношению к росту новой фазы GaAs. Критическое пересыщение по As₄^{*} снимается быстрым образованием двумерных зародышей (2D-nucleation). Возникает большое число критических зародышей ("4GaAs"), дальнейший рост которых резко снижает концентрацию As₄^{*} на поверхности до нового стационарного значения *C*^{*}, при котором $k_2C^* \ll k'_3(C^*)^2$ (а также $k_2C^* \ll k_1P$). С подавляющей вероятностью As₄^{*} будет участвовать в реакции $k'_3(C^*)^2$, прежде чем десорбируется с поверхности. Оценки показывают, что уже при $C^* \sim 10^{-7}$ и $k'_3 \sim 10^{13}$ 1/s реализуется условие малости реакционного времени жизни As₄^{*} ($1/k'_3C^* \sim 10^{-6}$ 1/s) по отношению к времени десорбции As₄^{*} ($1/k_2 \sim 10^{-5}$ 1/s). Морфологическое изменение поверхности в режиме 2D-nucleation требует изменения константы k_3 на k'_3 при условии $k'_3 \gg k_3$.

Снижение концентрации As_4^* до C^* в режиме 2D-nucleation аналогично резкому снижению концентрации адатомов Ga в МЛЭ на As-стабилизированной поверхности (2 × 4) при образовании на этой поверхности двумерных зародышей GaAs [10].

Сделаем ряд замечаний по работе [1]. Во-первых, слабая температурная зависимость скорости роста, исследуемая авторами работы [1], была ассоциирована ими с членом A(T) в выражении (4). Однако, как следует из нашего анализа, чтобы не "зацепить" резкую температурную зависимость скорости роста выражений (2) и (3) и гарантировать применимость (4), следует определить критическую точку перехода к (4) при данном давлении As4. Авторы не провели таких исследований. Во-вторых, авторы использовали неприемлемую для анализа функцию коэффициента инкорпорирования S вида: 2S/1 - 2S. При $S \simeq 0.5$, эта функция может быть как угодно большой, а значит резко усиливает экспериментальные ошибки, допущенные при измерении S.

Данная работа выполнена при поддержке РФФИ (грант № 96-03-33916а; № 95-02-04618а).

Список литературы

- Tok E.S., Neave J.H., Zhang J., Joyce B.A., Jones T.S. // Surf. Sci. 1997. V. 374. P. 397.
- [2] Karpov S.Yu., Maiorov M.A. // Surf. Sci. 1995. V. 344. P. 434.
- [3] Tok E.S., Neave J.H., Zhang J., Allegretti F.E., Joyce B.A., Jones T.S. // Surf. Sci. 1997. V. 371. P. 277.
- [4] Карпов С.Ю., Майоров М.А. // Письма в ЖТФ. 1997. V. 23. Р. 64.
- [5] Ott A.K., Casey S.M., Alstrin A.L., Leone S.R. // J. Vac. Sci. Technol. 1996. B. 14. P. 2742.
- [6] Galitsyn Yu.G., Mansurov V.G., Marahovka I.I. // Phys. Low-Dim. Struct. 1997. V. 5/6. P. 75.
- [7] Galitsyn Yu.G., Mansurov V.G., Marahovka I.I. // Phys. Low-Dim. Struct. 1997.
 V. 7. P. 55.
- [8] Garcia J.C., Neri C., Massies J. // J. Cryst. Growth. 1989. V. 98. P. 511.
- [9] Foxon C.T., Joyce B.A. // Surf. Sci. 1975. V. 50. P. 434.
- [10] Myers-Beaghton A.K., Vvedensky D.D. // Phys. Rev. (B) 1990. V. 42. P. 5544.