05;11;12

Наноструктура быстро закаленного магнитного сплава NdFeB

© О.А. Великодная, Е.И. Луговская, Т.И. Мазилова

Национальный научный центр "Харьковский физико-технический институт"

Поступило в Редакцию 29 августа 1997 г.

Методами высокоразрешающей полевой эмиссионной микроскопии исследована наноструктура сплава NdFeB. Обнаружена тонкая полосчатая структура зернограничной фазы, ответственной за высокую коэрцитивность сплава.

В последние годы на базе систем NdFeB были созданы постоянные магниты с энергетическим произведением до $400 \text{ kJ} \cdot \text{m}^{-3}$, что значительно выше теоретического предела для большинства использовавшихся ранее магнитожестких материалов [1]. Хотя природа высокой коэрцитивности редкоземельных магнитов остается неясной, установлено, что она связана с наличием экстремально мелкомасштабных особенностей микроструктуры [1,2]. В настоящей работе для исследования строения сплава NdFeB применен один из наиболее высокоразрешающих структурных методов — комбинированный метод полевой ионной и электронной эмиссионной микроскопии [3].

Игольчатые образцы с радиусом кривизны у вершины 5–15 nm изготавливались электрохимическим травлением из быстро закаленного сплава $Nd_{11}Fe_{85}B_4$, полученного по стандартной методике [1]. Исследования проводились в двухкамерном низкотемпературном сверхвысоковакуумном полевом микроскопе, работающем в ионном и электронном режимах. Необходимая напряженность поля создавалась подачей на острийный образец постоянного положительного напряжения 10-25 kV и переменного напряжения амплитудой 6–30 kV. Амплитуда переменного напряжения выбиралась на уровне, необходимом для получения автоэлектронного тока плотностью 10^3 A/cm^2 . В качестве изображающего газа использовался водород при давлении $10^{-4} - -10^{-3}$ Pa. Полировка поверхности образцов осуществлялась полевым испарением

36

при напряженности 1.0–1.05 F_e , где F_e — пороговая напряженность поля, соответствующего скорости испарения 10^{-2} nm/s.

Зависимость плотности полевого электронного тока J от локальной напряженности поля F определяется уравнением Фаулера–Норгейма [4], из которого следует

$$\frac{dJ}{J} \cong \varkappa \cdot \frac{dF}{F},\tag{1}$$

где $\varkappa = B \cdot \varphi^{3/2} / F$ — коэффициент полевой чувствительности электронной эмиссии.

В наших экспериментах *F* изменялась в интервале 3–4 V/nm. Принимая для оценок φ равным работе выхода чистого железа (4.4 eV [4]), получим: 16 $\leq \varkappa \leq$ 21. Высокая полевая чувствительность электронной эмиссии обеспечила в настоящей работе выявление сравнительно небольших отклонений напряженности поля испарения *F*_e, связанных с ультрамелкомасштабными особенностями строения сплава.

Напряженность электрического поля, необходимая для безактивационного испарения сплава F_c в форме *n*-кратно-ионизованных атомов, определялась сопоставлением пороговых напряжений испарения и напряжений формирования лучшего изображения в ионах водорода ($2.2 \cdot 10^{10}$ V/m). Локальная энергия полевого испарения сплава рассчитывалась в рамках преодоления барьера, создаваемого суперпозицией потенциала сил изображения *n*-кратно-ионизованного атома и потенциала внешнего электрического поля [5]:

$$Q_0 = (n^3 \cdot e^3 \cdot F)^{1/2},$$
 (2)

где е — заряд электрона.

Большая часть образцов обнаруживала двухфазную структуру. Магнитожесткие зерна ϕ -фазы характеризовались пониженной напряженностью испаряющего поля и соответственно яркостью изображения [6]. На рис. 1 приведены эмиссионные изображения сформированной полевым испарением поверхности сплава Nd_{11} Fe₈₅B₄ в ионном (*a*) и электронном (*b* и *c*) режимах. Ионное изображение, получено непосредственно в процессе полевого испарения поверхности образца со скоростью 10^{-3} nm/s. Электронные изображения поверхности образца, полированной полем (рис. 1, *b* и *c*) получены при значениях амплитуд отрицательного напряжения 1.5 и 1.7 kV соответственно. Как видно из рис. 1, *a*, на ионных изображениях разрешаются отдельные атомы и

Рис. 1. Полевые эмиссионные микрофотографии быстро закаленного сплава NdFeB: *a* — ионное изображение, полученное в процессе полевого испарения поверхности образца; *b* и *c* — электронные изображения полированной полем поверхности, полученные при напряжении 1.5 и 1.7 kV соответственно.

их малые комплексы. Электронные изображения существенно более контрастны, и их конфигурация зависит от напряженности электрического поля (рис. 1, *в* и *с*). Контуры постоянной яркости полевого электронного изображения соответствуют постоянству отношения $\varphi^{3/2}/F$. При пониженных напряжениях электронно-микроскопические

Рис. 2. Ионно-микроскопическое (*a*) и электронно-микроскопическое (*b*) изображения зернограничной фазы. Наблюдаются следы выходов на поверхность параллельных пластинчатых выделений.

изображения обнаруживают тонкую структуру "яркой" зернограничной фазы, окружающей зерна магнитожесткой фазы Nd₂Fe₁₄B и идентифицируемой обычно как Nd₇B₃ [6]. Наблюдаются полосы повышенной яркости (рис. 1, *с* и рис. 2, *b*), сохраняющиеся в процессе длительного полевого испарения. Такие полосы указывают на наличие пластинчатых неоднородностей внутри обогащенной неодимом зернограничной фазы, характерных для спиноидального распада быстро закаленных сплавов. Система пластин ориентирована приблизительной нормально к границе с ϕ -фазой. Среднее расстояние между пластинами (2.5 ± 1.0) nm, толщина пластин 5–8 nm.

На электронных изображениях полированной испарением электрическим полем поверхности зерен магнитожесткой ϕ -фазы отсутствуют какие-либо особенности эмиссионного контраста, которые бы указывали

на наличие внутризеренных структурных и композиционных неоднородностей (рис. 1). Средний диаметр зерен ϕ -фазы составлял (25 ± 6) nm. Около 10% зерен имели размеры, превосходящие максимальный диаметр вершины игольчатого образца ~ 100 nm. Разность локальных энергий полевого испарения межзеренных пластин и материала, находящегося между пластинами, рассчитанная по формуле (2), составляла 1.4 eV/atom. Очевидно, что эта величина существенно превосходит характерные значения удельных энергий, связанных с различного типа нарушениями решетки. Таким образом, наблюдаемые особенности эмиссионного контраста зернограничной фазы указывают на наличие регулярных вариаций ее химического состава.

Нанокристаллической структуре быстро закаленного сплава NdFeB, обнаруженной в настоящей работе, соответствует однодоменное строение в пределах зерен основной магнитной фазы. Существенно, что объем образуемого обратного магнитного домена, определяемый размерами пластины зернограничной фазы, пренебрежимо мал по сравнению с объемом всего зерна. Однородность контраста электронных эмиссионных изображений зерен магнитожесткой фазы указывает на отсутствие внутризеренных структурных и композиционных неоднородностей, которые могли бы действовать как центры пиннинга для движения стенок Блоха. Обнаруженное в настоящей работе наличие тонкой зернограничной структуры может быть связано с неравновесностью фазы, обогащенной неодимом. Эти результаты следует учитывать при построении модели зародышеобразования в редкоземельных магнитожестких материалах.

Список литературы

- [1] Buschow K.H.J. // Repts. Progr. Phys. 1991. V. 54. N 9. P. 1123-1214.
- Kronmuller H., Durst K.D., Sagawa M. // J. Magn. Magn. Mater. 1988. V. 74.
 P. 291–302.
- Bakai A.S., Kulko V.B., Mikhailovskij I.M. et al. // J. Non-Cryst. Solids. 1995.
 V. 182. P. 315–320.
- [4] Модинос А. Авто-, термо- и вторично-электронная эмиссионная спектроскопия. М.: Наука, 1990. 320 с.
- [5] *Миллер М., Смит Г.* Зондовый анализ в автоионной микроскопии. М.: Мир, 1993. 301 с.
- [6] Hutten A., Haasen P. // Acta Metall. Mater. 1991. V. 39. P. 1-11.