Разработка системы противокоронных экранов инжектора и ускорителя пучка ионов диагностического комплекса для физических исследований плазмы

© М.М. Резинкина, О.С. Недзельский, С.М. Хребтов, О.Л. Резинкин

(Поступило в Редакцию 1 октября 1997 г.)

04:10:12

Предложена система противокоронных экранов, рассчитана и проверена. Установлено, что использование подобной системы эффективно.

Диагностика параметров горячей плазмы с помощью зондирующего пучка тяжелых ионов является в настоящее время одним из прогрессивных методов исследований. Для этого применяются инжекторы пучков тяжелых ионов и электростатические ускорители. Чтобы обеспечить эффективное функционирование данного оборудования, необходимо предотвратить появление коронного разряда с металлических элементов инжектора и ускоряющей трубки, в процессе эксплуатации находящихся под положительным потенциалом 0-200 kV. Острые кромки и небольшие радиусы скругления этих элементов обусловливают возникновение коронных разрядов на их краях. Коронирование приводит к нестабильности и неравномерности распределения ускоряющих потенциалов, перегрузке источника напряжения, возникновению мощных электромагнитных помех, ионизации и озонированию воздуха, понижению надежности работы всех систем и аппаратуры анализатора.

Условием возникновения короны вблизи поверхности металлических элементов, находящихся под напряжением (в дальнейшем электродов), является наличие электрического поля с напряженностью, превышающей начальную напряженность короны E. В случае стандартных атмосферных условий E составляет порядка 30 kV/cm [1,2]. Предварительные оценки, а также опыт эксплуатации подобных конструкций показывают, что вблизи их поверхностей будет происходить коронный разряд. К числу наиболее эффективных средств борьбы с данным явлением относится установка экранирующих электродов [3]. На основе известных технических решений [2–4] и опыта разработки высоковольтного

Рис. 1. Конструкция СПЭ.

оборудования выбрана конструкция системы полеобразующих экранов (СПЭ), основные элементы которой представлены на рис. 1. Экран инжектора ионов 1, выполненный в виде колпака с радиусом скругления 80 mm, и экран фланца 2 полностью экранируют все электроды инжекторного узла. Первый и второй промежуточные экраны 3 и 4, находящиеся под потенциалами 140 и 80 kV соответственно, понижают максимальные уровни напряженности электрического поля на градиентных кольцах 5. Градиентные кольца 5 обеспечивают синжение напряженности электрического поля на резисторах распределения ускоряющего напряжения 6, размещенных между кольцами по длине ускоряющей трубки 7.

Экран инжектора ионов 1 в процессе работы находится под максимальным потенциалом +200 kV. Конструктивно экран состоит из трех основных частей: колпака инжектора 1, фланца 8, экрана фланца 2 (см. рис. 1). Колпак 1 имеет цилиндрическую и торцевую часть со скругленными краями. В центре торцевой части находится отверстие для ввода высоковольтного кабеля 9. Расчетная масса экрана 1 составляет 1.4 kg. Первый промежуточный экран 3 СПЭ предназначен для снижения напряженности электрического поля вблизи поверхности градиентных колец, находящихся в процессе эксплуатации под потенциалами +190-140 kV. Экран находится под потенциалом +140 kV. Он состоит из тороидальной, цилиндрической и конической частей. В процессе сборки экран крепится к одному из градиентных колец 5. Расчетная масса первого промежуточного экрана 5.7 kg.

Второй промежуточный экран 4 предназначен для снижения напряженности электрического поля вблизи поверхности градиентных колец, находящихся в процессе эксплуатации под потенциалами +130-80 kV. Экран находится под потенциалом +80 kV. Данный экран имеет тороидальную и коническую части. В процессе сборки экран крепится к одному из градиентных колец 5. Расчетная масса второго промежуточного экрана 4.48 kg. Каждое градиентное кольцо 5 состоит из тора, изготовленного из алюминиевой тонкостенной трубки диаметром 10 mm и приваренного к нему по внутренней поверхности алюминиевого кольца толщиной 1 mm. В кольце имеются элементы крепления его на электродах ускоряющей трубки 7 (рис. 1). На поверхности кольца на заклепках укреплены с двух сторон лепестки, к которым припаиваются резисторы КЭВ-1 (позиция 6 на рис. 1).

Рис. 2. Осевое сечение первой расчетной области: 1 — экран 1; 2 — экран 2; 3 — кольцо изолятора; 4 — градиентное кольцо.

Для оценки эффективности разрабатываемой конструкции СПЭ были выполнены расчеты распределения электрического поля в областях с максимальными уровнями напряженности. Предварительные оценки позволили выбрать две такие опасные области: область Aи область B (рис. 1). Поскольку исследуемые зоны обладают осевой симметрией, то была использована цилиндрическая система координат. Это позволило решить задачу расчета поля в двумерном виде. Полагалось, что E зависит только от радиальной r и азимутальной zкоординат. Учитывая сложные геометрические формы электродов и СПЭ, для расчета применили метод конечных разностей.

Рассмотрим осевое сечение исследуемой зоны. На расчетную область нанесена неравномерная прямоугольная сетка с линиями, параллельными оси *z*: $r_1 = 0$; $r_2 = \Delta r_1; r_3 = r_2 + \Delta r_2, \ldots; r_i = r_{i-1} + \Delta r_{i-1}, \ldots;$ $r_{NR} = r_{NR-1} + \Delta r_{NR-1}$, и линиями, параллельными оси r: $z_1 = 0; z_2 = \Delta z_1; z_3 = z_2 + \Delta z_2, \ldots;$ $z_j = z_{j-1} + \Delta z_{j-1}, \ldots; z_{NZ} = z_{NZ-1} + \Delta z_{NZ-1}$ (где NR количество разбиений по оси r, NZ — количество разбиений по оси z; Δr_i , Δz_i — шаг сетки по координатам r и z соответственно). Величины Δr_i и Δz_i определялись исходя из требуемой точности счета так, чтобы учесть искажения поля на всех элементах рассматриваемой системы. С этой целью шаг в области неоднородности, например, градиентного кольца 5, выбирался в 8-10 раз меньшим размера данной неоднородности. Граничные условия определялись видом рассматриваемой системы.

Максимальные уровни напряженности электрического поля в различных зонах СПЭ

Зона	Рис. 2		Рис. 4	
	экран І	зона III	зона VI	зона V
$ E_{\rm max} $ [kV/cm]	16	15.5	14.6	14.4

Журнал технической физики, 1998, том 68, № 11

Учитывая, что к электродам прикладывается постоянное напряжение, для каждого узла расчетной сетки, лежащего на пересечении линий, параллельных осям *r* и *z*, записывалось следующее уравнение:

$$\int_{S} \gamma \cdot E_n ds = 0$$

где S — поверхность, охватывающая узел так, что расстояния между соседними узлами делятся ею пополам; индекс n означает проекцию вектора напряженности электрического поля **E** на нормаль к поверхности *S*.

Выразим в последнем выражении **E** через значения потенциала $\varphi_{i,j}(r, z)$ в узлах расчетной сетки. Окончательной запишем его в разностном виде для элементарной ячейки (i, j)

 $\Lambda_r \varphi_{i,i} + \Lambda_z \varphi_{i,i} = 0,$

где

$$\begin{split} &\Lambda_r \varphi_{i,j} = \varphi_{i-1,j} \cdot AR_{i,j} - \varphi_{i,j} (AR_{i,j} + BR_{i,j}) + \varphi_{i+1,j} \cdot BR_{i,j}, \\ &\Lambda_z \varphi_{i,j} = \varphi_{i,j-1} \cdot AZ_{i,j} - \varphi_{i,j} (AZ_{i,j} + BZ_{i,j}) + \varphi_{i,j+1} \cdot BZ_{i,j}, \\ &AR_{i,j} = \frac{1}{\Delta r_{i-1}} \left(r_i - \frac{\Delta r_{i-1}}{2} \right) \left(\frac{\Delta z_{j-1}}{2} \gamma_{i-1,j-1} + \frac{\Delta z_j}{2} \gamma_{i-1,j} \right), \\ &BR_{i,j} = \frac{1}{\Delta r_i} \left(r_i + \frac{\Delta r_i}{2} \right) \left(\frac{\Delta z_{j-1}}{2} \gamma_{i,j-1} + \frac{\Delta z_j}{2} \gamma_{i,j} \right), \\ &AZ_{i,j} = \frac{1}{\Delta z_{j-1}} \left[\left(r_i + \frac{\Delta r_i}{4} \right) \frac{\Delta r_i}{2} \gamma_{i,j-1} + \left(r_i - \frac{\Delta r_{i-1}}{4} \right) \frac{\Delta r_i}{2} \gamma_{i,j-1} \right], \\ &BZ_{i,j} = \frac{1}{\Delta z_j} \left[\left(r_i + \frac{\Delta r_i}{4} \right) \frac{\Delta r_i}{2} \gamma_{i,j} + \left(r_i - \frac{\Delta r_{i-1}}{4} \right) \frac{\Delta r_{i-1}}{2} \gamma_{i-1,j-1} \right], \end{split}$$

Рис. 3. Распределение потенциалов в первой расчетной области.

 $\gamma_{i,j}$ — удельная электропроводность ячейки, вершинами которой являются узлы (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1).

Данное уравнение решалось итерационным методом переменных направлений с помощью программы для IBM PC на языке FORTRAN-77. Вычисления производились аналогично расчетам, описанным в [5].

На рис. 2 приведено осевое сечение первой расчетной области (рис. 1, А). При расчете были заданы следующие граничные условия по координате г. Условия для r = 0 (i = 1): при z = 0 $\varphi_{1,1} = \varphi_0 = 140$ kV; для *z*, принадлежащих зоне *IV*, $\varphi_{1,j} = \varphi_1 = 150 \, \text{kV};$ для z зоны $V \varphi_{1,i} = \varphi_2 = 160 \,\text{kV}$; для z зоны VI; $\varphi_{1,j} = \varphi_3 = 170 \,\mathrm{kV};$ для z зоны VII $\varphi_{1,j} = \varphi_4 = 180 \,\mathrm{kV};$ для z зоны VIII $\varphi_{1,i} = \varphi_5 = 190$ kV; для z зоны IX $\varphi_{1,j} = \varphi_6 = 200 \, \mathrm{kV}$. При z > 0 и вне зон IV - IXвследствие осевой симметрии системы использованы однородные граничные условия второго рода $\partial \varphi / \partial r = 0$. Условие при $r = r_{\max}$: $\varphi_{NR,j} = 140$ kV. Граничные условия по координате z были такими: при z = 0 $(j = 1) - \varphi_{i,1} = \varphi_0 = 140$ kV, при $z = z_{\text{max}}$ (j = NZ)для *r*, принадлежащих зоне *I*, $\varphi_{i,NZ} = 140 \, \text{kV}$; для *r*, принадлежащих зоне II, $\partial \varphi / \partial z = 0$. Потенциал точки (NR, NZ): $\varphi_{NR,NZ} = 140$ kV.

Результаты расчета распределения электрического поля в области A (рис. 2) показаны на рис. 3 и в таблице.

На рис. 3 представлены эквипотенциальные линии в осевом сечении системы. Надписанные на эквипотенциалях значения даны в вольтах. В таблице приведены максимальные уровни напряженности электрического поля в различных зонах СПЭ, наиболее опасных с точки зрения появления короны. Как видно из таблицы, уровни максимальной напряженности электрического поля не превышают 16 kV/cm, что позволяет говорить о надежной защите от короны в данной области.

На рис. 4 представлено осевое сечение второй расчетной области (рис. 1, *B*). При расчете были заданы

Рис. 4. Осевое сечение второй расчетной области: *I* — экран *I*, *2* — колпак, *3* — кабель.

Рис. 5. Распределение потенциалов во второй расчетной области.

следующие граничные условия по координате *r*. При r = 0 на оси симметрии системы (i = 1) для *z*, принадлежащих зоне *I*, $\varphi_{1,j} = \varphi_2 = 200$ kV, для *z*, принадлежащих зоне *IV*, $\partial \varphi / \partial r = 0$. Потенциал точки (1, NZ): $\varphi_{1,NZ} = 0$. Граничные условия при $r = R_{\text{max}}$ (i = NR): $\varphi_{NR,j} = 0$. Граничные условия по координате *z*. Для *r*, принадлежащих зоне *I*, $\varphi_{i,1} = \varphi_2 = 200$ kV, для *r*, принадлежащих зоне *II*, $\varphi_{i,1} = \varphi_1 = 140$ kV. Вне этих зон были использованы однородные граничные условия второго рода $\partial \varphi / \partial z = 0$.

Распределение потенциалов в такой системе показано на рис. 5, значения максимальной напряженности электрического поля — в таблице. Первоначально конструкция данной электродной системы была несколько иной. Расчеты, проведенные для электродной системы, аналогичной показанной на рис. 4, но с меньшими радиусами скругления (радиус скругления зоны VI 70 mm, скругление зоны VII отсутствовало), показано, что максимальные уровни напряженности электрического поля в такой системе будут достигать 25 kV/cm. Такие напряженности при определенных условиях могут приводить к появлению короны. Для снижения уровней Е геометрия системы была изменена (рис. 4). Как видно из таблицы, применение такой геометрии СПЭ обеспечило снижение максимальных уровней модуля E до 14.6 kV/cm, что позволяет избежать коронирования на поверхностях электродов и экранов.

Таким образом, разработана конструкция СПЭ, обеспечивающая надежное подавление коронирования находящихся под потенциалом элементов системы. Это позволяет повысить надежность и стабильность работы ускорителя, увеличить коэффициент использования источника напряжения, а также снизить уровень электромагнитных помех и концентрацию озона в зоне работы установки.

Данная разработка выполнена в рамках контракта между Институтом физики плазмы (Харьков) и Centro de Investigaciones Energetics, Medioambientales y Tecnologicas (СІЕМАТ) (Мадрид) на 1996–2000 г.г.

Список литературы

- Александров Г.Н., Иванов В.Л., Кизеветтер В.Е. Электрическая прочность наружной высоковольтной изоляции. М.: Энергия, 1969. 238 с.
- [2] Техника высоких напряжений / Под ред. М.В. Костенко. М.: Высшая школа, 1973. 527 с.
- [3] Тубаев В.М. Канд. дисс. Харьков, 1965.
- [4] Кучинский Г.С., Кизеветтер В.Е., Пинталь Ю.С. Изоляция установок высокого напряжения. М.: Энергоатомиздат, 1987. 368 с.
- [5] Резинкина М.М., Резинкин О.Л. // Электричество. 1995. № 7. С. 62–66.