Фотостимуляция диффузии атомов Na в сплаве NaAu. I. Кинетические характеристики

© М.В. Кнатько, В.И. Палеев, М.Н. Лапушкин

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 18 ноября 1997 г.)

Приведены результаты исследования процесса фотоактивации диффузии атомов Na в приповерхностной области нагретого золота. Получены зависимости скорости этого процесса от температуры подложки и концентрации атомов щелочного металла в адслое и в приповерхностном слое золота. Найдены кинетические характеристики фотостимулированной диффузии. Показано, что этот процесс обусловлен воздействием света на сплав NaAu, приводящим к увеличению скорости диффузионного движения атомов Na в приповерхностной области твердого тела.

Введение

05:07:11

Адсорбция атомов щелочных металлов на золотой подложке при комнатной или повышенных температурах сопровождается образованием в приповерхностной области сплава AuM (М — атом щелочного металла). Образующиеся соединения обладают свойствами, существенно отличающимися от свойств металлов, входящих в состав сплава. Так, сплав Cs–Au является полупроводником с запрещенной зоной 2.6 eV [1]. Полупроводниковая электронная структура предсказана также для равноатомных сплавов золота с рубидием [2].

При исследовании фотохимических реакций с участием атомов щелочных металлов и галогенов на поверхности поликристаллического золота при высоких температурах было найдено, что облучение поверхности видимым светом малой интенсивности приводит к увеличению скорости диффузионного транспорта атомов щелочных металлов [3]. Было показано, что облучение светом с $h\nu > 2.6 \text{ eV}$ золотой ленты стимулирует выход на ее поверхность примесных атомов Cs, Na и K, внедренных в приповерхностную область твердого тела, и, наоборот, при болыших поверхностных покрытиях щелочным металлом золота аналогичное освещение вызывает уход атомов M с поверхности в объем металла.

В настоящей работе приводятся результаты дальнейших исследований фотовоздействия на диффузию атомов в приповерхностных слоях золота при использовании в качестве адсорбата натрия. Как и в [3], применялась методика, основанная на поверхностно-ионизационном детектировании атомов щелочного металла. Измерялся ток ионов Na⁺ в потоке термодесорбирующихся с поверхности частиц. Поскольку в процессе поверхностной ионизации при постоянной температуре эмиттера T и стабильной работе выхода электронов φ при малых поверхностных концентрациях адсорбата в потоке десорбирующихся частиц одного химического состава доля ионов однозначно определена, то по изменению ионного тока можно следить об изменении концентрации частиц на поверхности эмиттера n_c . Поверхностно-ионизационное детектирование атомов щелочных металлов, обладающих низкими энергиями ионизации, производится с наибольшей эффективностью и широко используется [4] с момента открытия этого явления. При этом не играет роли источник поступления ионизируемых частиц на поверхность эмиттера. Этот способ применим как для регистрации собственной термоионной эмиссии, так и для детектирования поступающих извне частиц.

Методика экспериментов

Используемая в экспериментах по исследованию фотостимуляции диффузии масс-спектрометрическая установка описана раньше [5]; предварительная очистка золотых образцов производилась так же, как в [3].

Кинетика формирования сплава NaAu в приповерхностной зоне нагретой золотой подложки при адсорбции на ней атомов Na, а также процесс очистки от примеси щелочного металла подробно рассмотрены в [6].

Для изучения эффекта фотовоздействия на диффузию Na в золоте использовались два вида подготовки золотых эмиттеров. В ряде экспериментов на очищенное золото направлялся поток атомов Na с плотностью у поверхности $i = 10^{12} - 10^{13} \, 1/\text{cm}^2 s$ и лента поддерживалась при постоянной T в диапазоне 600 < T < 1200 К. При этих условиях напыление Na продолжалось в течение 24 h, затем поток щелочного металла на поверхность прерывался и производился отжиг ленты в течение 2-3 h при температурах 1150 < T < 1250 K. После такой обработки ленты регистрировалась собственная термоионная эмиссия Na⁺, являющаяся следствием выхода на поверхность из объема внедренных атомов Na. Величина темнового ионного тока *I_b* постепенно уменьшалась в соответствии с изменением объемной концентрации в золоте примеси щелочного металла, однако даже после 150-часового отжига эмиссия ионов Na⁺ полностью не прекращалась.

В другой серии экспериментов на очищенную от примеси щелочных металлов нагретую золотую ленту направляли поток атомов Na. Величина темнового

Рис. 1. Зависимость тока ионов Na⁺ от освещения предварительно допированной натрием золотой ленты после ее отжига. $T = 1150 \text{ K}, h\nu = 3.52 \text{ eV}.$

тока поверхностной ионизации Na (I_b) зависела от T эмиттера, работы выхода электронов φ и плотности падающего на поверхность потока Na, а также от скоростей диффузионного обмена натрием между поверхностью и приповерхностным слоем подложки.

Фотостимуляция диффузионного выхода на поверхность атомов Na (или их ухода с поверхности подложки в приповерхностную область) определялась по изменению тока $\Delta I = |I - I_b|$, где I — величина тока ионов Na⁺ при освещении подложки.

На рис. 1 в качестве примера показан характерный вид зависимости тока ионов Na⁺ от освещения при облучении монохроматическим светом с интенсивностью < 10 mW/cm² предварительно допированной натрием и отожженной нагретой золотой ленты в отсутствие внешнего потока Na. Чтобы вызвать подобный эффект увеличения собственной термоэмиссии нагреванием ленты, ее температуру пришлось бы повысить на $\Delta T = 45-50^{\circ}$, что требует больших затрат энергии и было бы легко определено пирометрически. В рассматриваемом случае увеличение T вследствие радиационного нагрева составляло $\Delta T \ll I_0$ и не могло измеримо влиять на величину ΔI .

С увеличением T эмиттера величина $\Delta I/I_b$, характеризующая эффективность фотовоздействия на диффузионный выход Na на поверхность, монотонно уменьшается во всем исследованном диапазоне температур 1000 < T < 1200 K, как показано на рис. 2.

Измеряемая нашей методикой зависимость фотостимулированной диффузии Na от концентрации этих атомов в приповерхностной области золота имеет сложный характер. Изменение тока ΔI связано с фотоиндуцированным изменением поверхностной концентрации атомов Na на подложке. Плотность диффузионного потока атомов определяется градиентом их концентрации между поверхностью и приповерхностной областью, а также коэффициентом диффузии, связанным с величиной энергетического барьера на поверхности твердого тела. При этом структура поверхностного барьера и термоэмиссионные свойства адсорбционной системы зависят как от концентрации натрия в приповерхностной области, так и от плотности Na на поверхности подложки.

В случае предварительно насыщенного натрием и частично очищенного от примеси щелочного металла высокотемпературным отжигом золота фотостимуляция

Рис. 2. Температурная зависимость эффективности фотовоздействия на предварительно допированную натрием золотую ленту после ее отжига. $h\nu = 3.52$ eV.

выхода Na на поверхность с его последующей десорбцией четко регистрируется (рис. 1). В том случае, когда на поверхность золота из испарителя направлен поток *i* атомов Na, поверхностная концентрация натрия определяется не только поступлением этих атомов извне, но и их диффузионным обменом между поверхностным и приповерхностным слоями.

Изменением плотности *i* внешнего потока Na можно влиять на величину и направление градиента концентраций этих атомов между верхним и подбарьерными слоями подложки и тем самым менять величину и направление диффузионного потока. На рис. 3 в логарифмическом масштабе построен график изменения фотостимулированной части диффузионного потока атомов Na между адслоем и внутренней областью золота в зависимости от интенсивности падающего на поверхность атомного потока при последовательном увеличении *i*.

Доля частиц в фотостимулированном потоке, за которую отвечает напыление Na, определена здесь как

$$\gamma = \left| (\Delta I_p - \Delta I_0) / \Delta I_0 \right|_{\gamma}$$

где ΔI_p — фотоотклик ионного тока при поступающем потоке Na, ΔI_0 — фотоотклик при перекрытом потоке.

При некоторых достаточно больших i освещение вызывает уменьшение n_c натрия за счет стимуляции его ухода с поверхности в объем твердого тела.

Приведенная зависимость имеет гистерезисный характер, и, для того чтобы вернуться к исходному значению γ , требуется произвести высокотемпературный отжиг золота.

На рис. 4 показано изменение во времени тока ионов Na⁺ после включения освещения поверхности или его выключения в том случае, когда результирующий диффузионный поток направлен в глубь подложки. Вид зависимости I(t) на рис. 4 определяется кинетикой изменения покрытия поверхности подложки натрием, которая в свою очередь отражает изменение скорости определяющих величину n_c диффузионных потоков щелочных атомов.

Рис. 3. Зависимость γ от плотности напыляемого потока Na.

Рис. 4. Зависимость тока ионов Na⁺ от освещения в процессе напыления на золото атомов Na. T = 1150 K, $h\nu = 3.52$ eV. $i = 10^{12}$ cm⁻² · s⁻¹.

На основании приведенных выше результатов экспериментов можно сделать ряд заключений о причинах возникновения фотостимулированной диффузии атомов Na в золоте и о параметрах этого процесса.

Обсуждение результатов экспериментов

Для проявления процесса фотостимулированной диффузии атомов Na в нагретом золоте требуется предварительно создать в приповерхностной области металлического золота концентрацию щелочного металла, достаточную для образования сплава NaAu. На это указывает отсутствие фотоактивации диффузии микропримесей щелочных металлов в чистом золоте. С другой стороны, фотостимуляция диффузии щелочных атомов появляется одновременно с уменьшением скорости сублимации Аи [7], показывающим, что на поверхности золота образуется слой, отличающийся по химическим свойствам от чистого металла. Таким образом, наблюдаемый процесс связан с первичным воздействием света на соединение AuNa, сопровождающимся диффузией атомов Na в этом соединении. При этом, как показывает рис. 1, фотовоздействие на сплав существенно увеличивает скорость диффузии, в сравнении с темновой.

Поскольку в отсутствие освещения лишь незначительная часть от направляемого на поверхность потока атомов уходит в подложку, то можно считать, что при малых покрытиях подложки, не изменяющих φ , величина n_c прямо пропорциональна величине *i*. Как следует из приведенной на рис. З зависимости $\lg \gamma = f(\lg i)$, вызываемый светом диффузионный поток Na связан с n_c соотношением $\gamma = Cn_c^{1.32}$. Можно предположить, что эта степенная зависимость определена такими факторами, как изменение коэффициента диффузии Na в NaAu и изменение оптических характеристик сплава с изменением концентрации Na, а также, возможно, с изменением фазового состава сплава Na_xAu_y. Для выяснения того, какой из перечисленных факторов играет главенствующую роль, требуются дополнительные исследования. Однако из сопоставления фронтов фотоиндуцированного изменения тока ΔI для двух состояний подложки, представленных на рис. 1 и 4, можно сделать некоторые выводы.

Кинетика роста и спада ΔI зависит от скорости наиболее медленного из процессов, определяющих изменение концентрации n_c при включениии и выключении освещения подложки. Этими процессами являются диффузия Na (к поверхности из глубины подложки или в обратном направлении) и термическая десорбция этих атомов, сопровождающаяся поверхностной ионизацией.

Рассмотрим случай, представленный на рис. 1, в котором показано фотовоздействие на скорость десорбции Na из предварительно допированного и отожженного золота. При отсутствии света наблюдается медленное уменьшение величины *I*. Периодическое освещение поверхности вызывает модуляцию тока с постоянными времени увеличения и спада соответственно $\tau^{h\nu} = \tau^0 = 0.1$ s. Эти величины τ практически совпадают с временем жизни атомов Na на поверхности золотой подложки при T = 1130 K, если использовать для его вычисления полученную в [8] энергию активации десорбции Na с поверхности золота $l = 230 \, \text{kJ/mol.}$ Следовательно, скорость фотоактивированной диффузии Na в приповерхностных слоях частично обедненной щелочными атомами ленты не является лимитирующим фактором в наблюдаемой кинетике десорбции ионов Na⁺.

В представленном на рис. 4 случае при тех же T на поверхность сильно допированого Au поступает извне поток атомов, поддерживающий концентрацию n_c , достаточную для роста сплава в глубину подложки за счет диффузии Na с поверхности. При включении света постоянная времени спада I в результате фотоактивации диффузионного ухода Na с поверхности $\tau^{h\nu} = 4.2$ s, при прекращении освещения соответственно характеристическое время восстановления I до стационарного значения темновой эмиссии $\tau^0 = 55$ s.

Возможное объяснение наблюдаемого различия в фотовоздействии и в его релаксации в случаях слабо и сильно допированного Au, по нашему мнению, заключается в следующем. Как показывают оценки экспериментальных данных [6], энергии активации диффузии атомов Na в сплаве NaAu и в металлическом золоте различны и составляют соответственно ΔE (NaAu) = 3.15–3.20 eV и ΔE (Au) = 5.1 eV.

В процессе отжига ленты происходит существенное обеднение щелочными атомами ее поверхностного слоя, приводящее к "консервации" сплава в низлежащих приповерхностных слоях. Термическое разложение сплава сопровождается слабой темновой эмиссией щелочных атомов, преодолевших обедненный сплавом слой. Свет вызывает деградацию сплава, сопровождающуюся повышением на его ближней к поверхности границе концентрации свободного Na и соответствующим увеличением потока этих частиц на поверхность. На основании того, что лимитирующей скорость наблюдаемого фотопроцесса стадией является термодесорбция частиц, можно полагать, что Na поступает на поверхность через узкий обедненный слой в результате 1–2 скачков.

В случае сильно допированного натрием золота энергия активации диффузии Na в сплаве NaAu, по-видимому, меньшая, чем в отожженном золоте, и зависит от концентрации Na в приповерхностной области. Фотодействие в этом случае определяет увеличение транспорта Na в глубь подложки в направлении реакционной зоны формирования сплава. Поскольку эффективность фотовоздействия уменьшается с глубиной проникновения света в твердое тело, а сформированный сплав занимает большую глубину, то результирующее влияние освещения на изменение диффузионного потока Na в приповерхностном слое, определяющего концентрацию этих атомов на поверхности подложки, сложное и затрагивает большое количество слоев. В этом случае регистрируемые скорости нарастания эффекта фотодействия и его спада при прекращении освещения определяются кинетикой диффузионных процессов в сплаве и скоростью восстановления распределения концентрации Na после освешения.

Как показывают исследования, эффект фотостимуляции диффузии связан с возбуждением электронной системы сплава щелочной металл–золото, и этот вопрос будет предметом последующих публикаций [9].

Работа выполнена при поддержке гранта РФФИ (проект № 96-02-16908) и Государственной программы МНТ РФ "Поверхностные атомные структуры" (проект № 95-2.13).

Список литературы

- Spicer W.E., Sommer A.H., White J.G. // Phys. Rev. 1959.
 Vol. 115. N 1. P. 57–62.
- Koenig C., Christensen N.E., Kollar J. // Phys. Rev. B. 1984.
 Vol. 29. N 12. P. 6481–6488.
- [3] Зандберг Э.Я., Кнатько М.В., Палеев В.И. и др. // Письма в ЖТФ. 1995. Т. 21. Вып. 19. С. 15–20.
- [4] Зандберг Э.Я., Ионов Н.И. // Поверхностная ионизация.
 М.: Наука, 1969. 432 с.
- [5] Зандберг Э.Я., Кнатько М.В., Палеев В.И. // Письма в ЖТФ. 1986. Т. 12. Вып. 16. С. 979–983.
- [6] Knat'ko M.V., Paleev V.I., Lapushkin M.N. // Phys. Low-Dim. Struct. 1998. Vol. 5/6. P. 85–93.
- [7] Knat'ko M.V., Paleev V.I., Zandberg E.Ya. // Phys. Low-Dim. Struct. 1996. N 7/8. P. 27–32.
- [8] Neumann A., Schroeder S.L.M., Christmann K. // Phys. Rev. B. 1995. Vol. 51. N. 23. P. 17007–17022.
- [9] Кнатько М.В., Лапушкин М.Н., Палеев В.И. // ЖТФ. 1998.
 Т. 68. Вып. 10. С. 108–111.